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Abstract

A diverse set of scheduling objectives (e.g., resource contention, fairness, priority, etc.) breed a
series of objective-specific schedulers for multi-core architectures. Existing designs incorporate
thread-to-thread statistics at runtime, and schedule threads based on such an abstraction (we
formalize thread-to-thread interaction as the Thread-Interaction Matrix). However, such an
abstraction also reveals a consistently-overlooked issue: the Thread-Interaction Matrix (TIM)
is highly sparse. Therefore, existing designs can only deliver sub-optimal decisions, since the
sparsity issue limits the amount of thread permutations (and its statistics) to be exploited when
performing scheduling decisions.

We introduce Sparsity-Lightened Intelligent Thread Scheduling (SLITS), a general scheduler de-
sign for mitigating the sparsity issue of TIM, with the customizability for different scheduling
objectives. SLITS is designed upon the key insight that: the sparsity issue of the TIM can be
effectively mitigated via advanced Machine Learning (ML) techniques. SLITS has three compo-
nents. First, SLITS profiles Thread Interactions for only a small number of thread permutations,
and form the TIM using the run-time statistics. Second, SLITS estimates the missing values
in the TIM using Factorization Machine (FM), a novel ML technique that can fill in the miss-
ing values within a large-scale sparse matrix based on the limited information. Third, SLITS
leverages Lazy Reschedule, a general mechanism as the building block for customizing different
scheduling policies for different scheduling objectives. We also show how SLITS can be (1)
customized for different scheduling objectives, including resource contention and fairness; and
(2) implemented with only negligible hardware costs.

We evaluate two SLITS variants against four state-of-the-art scheduler designs. We highlight
that, averaged across 11 benchmarks, SLITS achieves an average speedup of 1.08X over the de
facto standard for thread scheduler - the Completely Fair Scheduler, under the 16-core setting
for a variety of number of threads (i.e., 32, 64 and 128). Our analysis reveals that the benefits
of SLITS are credited to significant improvements of cache utilization. In addition, our experi-
mental results confirm that SLITS is scalable and the benefits are robust when of the number
of threads increases. We also perform extensive studies to (1) break down SLITS components
to justify the synergy of our design choices, (2) examine the impacts of varying the estimation
coverage of FM, (3) justify the necessity of Lazy Reschedule rather than periodic rescheduling,
and (4) demonstrate the hardware overheads for SLITS implementations can be marginal (<1%
chip area and power).

The design of SLITS breed a few implications on the limitations of multi/many-core architec-
tures, and how our design can be generally applicable to a variety of similar scenarios on resource
scheduling and managements. We first identify the potential of SLITS for other types of re-
source scheduling and management in the current processor-centric computer systems. Then,
we discuss the implications from SLITS in terms of future research on emerging computing
paradigms, and highlight important research questions in a broad context of resource schedul-
ing (and managements).

∗Note that ‡refers the affiliation to The Chinese University of Hong Kong.

1



Contents

1 Introduction 3

2 Background & Motivation 6
2.1 Existing Scheduler Designs for Different Scheduling Objectives . . . . . . . . . . . . . 6
2.2 Motivation: Sparsity of the Thread-Interaction Matrix - The Hidden Issue . . . . . . 6
2.3 A Quantitative Characterization on the Sparsity Issue of the Thread-Interaction Ma-

trix among Mainstream Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 SLITS: Design Overview 9
3.1 SLITS Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Step 1: Profiling Statistics for Thread-Interaction Matrix . . . . . . . . . . . . . . . . 9
3.3 Step 2: Estimating Missing Statistics via Factorization Machines . . . . . . . . . . . 10
3.4 Step 3: Lazy Reschedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 SLITS: Detailed Designs 13
4.1 Thread Interaction Statistics Cache (TIS-Cache) . . . . . . . . . . . . . . . . . . . . 13
4.2 Using Factorization Machines for Thread-Interaction Matrix . . . . . . . . . . . . . . 13
4.3 Customizing SLITS for Different Objectives . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.1 SLITS-(Contention): Mitigating Resource Contention . . . . . . . . . . . . . 14
4.3.2 SLITS-(Fairness): Preserving Thread Fairness . . . . . . . . . . . . . . . . . . 15
4.3.3 Customizing SLITS for More Scheduling Objectives . . . . . . . . . . . . . . . 15

5 Experimental Methodology 16
5.1 Experimental Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Comparison Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Workload Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Experimental Results 18
6.1 SLITS versus Other Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Breakdown Analysis of SLITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Breakdown Analysis of Different SLITS Components . . . . . . . . . . . . . . . . . . 20
6.4 Different Coverage of FM Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.5 Suitability of Lazy Reschedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.6 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Related Works 24
7.1 Scheduler Designs for Fixed Scheduling Objectives . . . . . . . . . . . . . . . . . . . 24
7.2 Heuristic/Statistical-Approach-based Schedulers Designs . . . . . . . . . . . . . . . . 24
7.3 Exploiting Machine Learning Techniques to Assist the Schedulers . . . . . . . . . . . 24

8 Conclusions and Implications 25
8.1 Conclusion from this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.2 Implications: Generality and Applicability . . . . . . . . . . . . . . . . . . . . . . . . 25
8.3 Implications on Future Research and Practice . . . . . . . . . . . . . . . . . . . . . . 26

8.3.1 Major Implications on Research . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2



1 Introduction

Thread scheduling on multi-core architectures is essential to maximize the utilization of hardware
resources. To better satisfy the needs of thread scheduling, a variety of scheduling objectives are
formed1. Regardless of which specific scheduling objective is targeted, existing designs can be
categorized into two types. ➊ Early designs schedule threads with fixed rules2, which does not rely
on and/or correlate with workload characteristics. However, fixed-rule schedulers can not satisfy
the needs of different scheduling objectives. ➋ The demands for different scheduling objectives
breed more recent efforts, to take scheduling objectives into account. These designs target a specific
scheduling objective (e.g., resource content, fairness, etc.), by (1) collecting run-time information
of threads and their correlations quantitatively (e.g., Cache Miss Count [30, 46], Thread IPC [82],
dynamic priority requirements like Earliest Deadline First [5, 57, 23]); and (2) perform scheduling
decisions based on thread-to-thread interactions.

We first observe that it is feasible to formalize these two types of scheduler designs in a unified
manner, by centering our focus on Thread-Interaction statistics. For the first time, we define Thread-
Interaction Matrix (TIM), which stores the statistics of thread-to-thread interaction. The types of
these statistics can be any type of run-time statistics regarding the thread-to-thread pairs (e.g.,
Cache Miss Count [30, 46], Thread IPC [82], dynamic priority requirements like Earliest Deadline
First [5, 57, 23])3. Based on TIM, we can specialize the designs of scheduling policies, by specifying
the rules of thread rescheduling (e.g., rescheduling conditions and rescheduling strategies). The
combination of the above two parts provides a sufficient formalization of all existing thread scheduler
designs. Hence, such a formalization provides an essential foundation to rethink a general scheduler
design, which can be (1) customized for different scheduling objectives; and (2) co-designed between
Thread-Interaction Matrix and the scheduling policies in a synergistic manner.

Our work is first motivated by the key observation that the TIM is highly sparse, because
(1) the actual executions can only explore a very small subset of all possible thread permutations
(i.e., thread-to-core mapping); and (2) the interaction statistics of workload threads may vary
greatly in different execution stages. Hence, the sparsity of the TIM is expected to restrict thread
schedulers to only making sub-optimal scheduling decisions, since the decision-making procedure
only relies on a large-yet-(mostly)-unavailable search space for all possible thread permutations4.
We experimentally characterize five mainstream scheduler designs, and report the best results of
them (i.e., top two from the explored permutations during executions) in terms of the exploitation
from the thread scheduling search space (i.e., Round-Robin Scheduler and Random Scheduler), to
examine the severity level of the sparsity within the TIM. Our characterizations reveal that the
sparsity of the TIM is highly severe: for all workloads included in our experiments, the best results
of existing mainstream schedulers can only enumerate up to 2.1% of all possible thread permutations
under the 32-thread configuration, and they can only enumerate up to 0.23% of all possible thread
permutations under the 64-thread configuration.

1We name several examples regarding scheduling objectives: mitigating hardware resource contention in different
levels for high throughput [4, 32], allocating evenly-distributed resources for co-running threads for fairness [14, 15],
scheduling threads following priority-based policies for prioritization [22], etc.

2Representative examples from fixed-rule schedulers include Round-Robin or Work-Stealing [27, 52, 12, 62, 47],
priority [22], and etc.

3Note that, for fixed-rule scheduling, we can simply view that the TIM contains any static values since the statistics
do not affect the scheduling decisions at any stage.

4One straightforward example to back up this claim is the scheduler designs to minimize the resource contention:
though the scheduler is expected to allocate available threads for the minimization of the resource contention, the
scheduler is incapable to approximate the minimization since the run-time statistics of most thread permutations are
not available.
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Our characterizations reveal that: the sparsity issue of TIM is affected significantly by both
scheduling policies and workload characteristics. Hence, it is critical to mitigate the sparsity issue
of TIM, since the root cause of such a sparsity issue is not deterministic. Moreover, the ambiguity of
the sparisty issue within TIM also makes it challenging, to co-design an effective scheduling policy.
Our goal in this work is to deliver a general design, to allow effective and customizable co-designs
between TIM and scheduling policies, with the central focus on mitigating the sparsity issue of TIM.

To this end, we introduce Sparsity-Lightened Intelligent Thread Scheduling (SLITS), a general
scheduler design for mitigating the sparsity issue of TIM, with the customizability for different
scheduling objectives. SLITS consolidates the key insight that: the sparsity issue of the TIM
can be effectively mitigated via advanced Machine Learning (ML) techniques. SLITS has three
components. First, SLITS profiles Thread Interaction for only a small number of available threads
based on their run-time statistics. Second, SLITS estimates the missing values from the TIM
using Factorization Machine (FM), a novel ML technique that can exploit a limited amount of
available information for a comprehensive estimation within a large-scale sparse matrix. Third,
SLITS leverages Lazy Reschedule, a general mechanism as the building block, when customizing
different scheduling policies for different scheduling objectives.

We then complement SLITS design with detailed implementations, and demonstrate potential
extensions of SLITS. There are three aspects. First, we propose Thread Interaction Statistics Cache
(TIS-Cache), to facilitate the need for fast access to the TIM. TIS-Cache can be implemented directly
by repurposing the recently-discussed eDRAM cache solely for storing, updating and exploiting
TIM. Second, we demonstrate the customizability of SLITS with two concrete variants, including
SLITS-(Contention) (i.e., for resource contention) and SLITS-(Fairness) (i.e., for fairness), by only
re-configuring the metrics for the TIM and adjusting the scheduling policies. These two variants of
SLITS serve as proof-of-concepts that SLITS can be customized for different scheduling objectives.

Results Overview. We compare two SLITS variants5 against four mainstream schedulers
designs, including Global Round-Robin Scheduler (G-RRS), Per-core Round-Robin Scheduler (P-
RRS), Work-Stealing Scheduler (WSS) and Completely Fair Scheduler (CFS) in multiple work-
loads and threads configurations. Our results show that, averaged across 11 benchmarks, SLITS-
(Contention) achieves 1.27X, 1.18X, 1.12X, and 1.09X speedup compared to G-RRS, P-RRS, WSS
and CFS under the 16-core setting with 32, 64 and 128 workload threads; and SLITS-(Fairness)
achieves 1.25X, 1.14X, 1.09X and 1.06X speedup compared to G-RRS, P-RRS, WSS and CFS under
the same settings. The above results show that SLITS always improves the performance over main-
stream thread schedulers, regardless of which scheduling objective SLITS aims for. Moreover, we
also justify that the benefits of SLITS are robust and scalable when the number of working threads
increases. Our analysis reveals that the benefits of SLITS are credited to significant improvements
of cache utilization. This is because SLITS mitigate the sparsity issue of the Thread-Interaction
Matrix by incorporating a novel ML technique; and leveraging a viable scheduling policy to achieve
different scheduling objectives in a customized manner.

We also perform an extensive amount of studies to understand the benefits of SLITS from
different modules (i.e., the FM module and the Lazy Reschedule module) and the hardware costs.
➊ We examine the cache behaviors of SLITS and mainstream schedulers. The results show that
SLITS can increase 21.45% L1 D-Cache hits while reducing 10.05% cycles spent in the L3 cache.
➋ We perform a breakdown analysis by module isolation, to understand the source of performance
benefits from the FM module and Lazy Reschedule. The results show that disabling either of the two
modules can lead to a considerable amount of performance degradation. ➌ We vary the estimation

5Note that, since the fairness can be viewed as scheduling with dynamic priorities, we do not deliver additional
examples of SLITS for Priority-oriented thread scheduling.
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range of the FM module to better understand how FM-driven estimations help with the scheduling.
The results justify the effectiveness of FM-driven estimation, to improve overall performance. ➍

We demonstrate the necessity of Lazy Reschedule mechanism, by comparing it against periodic re-
scheduling policies under various configurations of the fixed-time window. The results confirm that
Lazy Reschedule module is useful in controlling trigger conditions for thread rescheduling. ➎ We
analyze the hardware overhead of SLITS, based on our experimental settings. Our results show that
SLITS design and implementation incur only negligible overheads in terms of chip area and power
on commercial processors (i.e., <1%).

We make the following key contributions:

• We deliver a new formalization for general thread scheduler designs, and characterize the
sparsity issue under our formalization. Our characterization reveals that the sparsity issue
have been overlooked but is considerably severe for thread scheduling, which is caused by both
(1) scheduler designs and (2) workload characteristics.

• We propose Sparsity-Lightened Intelligent Thread Scheduling (SLITS), a general thread sched-
uler design to mitigate the sparsity issue of the Thread-Interaction Matrix, via a novel Machine
Learning technique, Factorization Machines.

• We provide detailed implementations of SLITS, by (1) repurposing the recently-discussed L4
eDRAM cache for the Thread Interaction Statistics Cache; and (2) concretely demonstrating
how SLITS can be customized for different scheduling objectives, including resource contention
and fairness.

• We evaluate the performance of SLITS against four mainstream thread schedulers and the
results suggest great potential for SLITS in practice. We also perform sensitivity studies to
understand the benefits and reveal potential issues of SLITS.

5



2 Background & Motivation

In this section, we provide the background information of this work. We first brief main categories
of thread scheduling designs, and distill two general components of these designs: the Thread-
Interaction Matrix and the scheduling policy (Section 2.1). Then, we reveal the hidden issues in
existing scheduling techniques: the sparsity of the Thread-Interaction Matrix (Section 2.2). Finally,
we conduct a quantitative characterization study on the sparsity issue of the Thread-Interaction
Matrix, to quantitatively reveal the severity of this issue (Section 2.3).

2.1 Existing Scheduler Designs for Different Scheduling Objectives

Thread scheduling is ubiquitous and paramount in modern computing systems, to efficiently manage
hardware resources for different scheduling objectives. Mainstream scheduling objectives can be
categorized into three types, which are Resource Contention (e.g., Cache Contention [46, 20, 17, 4,
32]), Fairness (e.g., P-Fairness and its variants [14, 15, 8, 53, 9, 10, 11, 74], Fair Share [82, 44, 36]
and Priority (e.g., Earliest Deadline First [51, 5, 57, 23]). Accordingly, several scheduler policies are
proposed for different scheduling objectives, which can be categorized into two types. The first type
of scheduler leverages fixed rules for thread scheduling (e.g., Round-Robin Scheduler, pre-defined-
priority Scheduler [22], Work-Stealing Scheduler [27, 12, 47, 62, 52]), which view thread-to-thread
interactions statically. The other type of schedulers leverages dynamic inter-thread statistics (e.g.,
IPC, Cache Miss [46], Fairness [82], dynamic priority [5], etc.). Both types of scheduling designs6

can be formalized into two parts. One is the Thread-Interaction Matrix, which stores the inter-
thread statistics of corresponding scheduling objectives7. The other is the scheduling policy, which
schedules candidate threads based on the available values in the Thread-Interaction Matrix.

2.2 Motivation: Sparsity of the Thread-Interaction Matrix - The Hidden Issue

Different from prior work, our work focuses on the sparsity of the Thread-Interaction Matrix, and
how we can deliver better scheduling policies against such an issue. The sparsity issue is triggered by
two facts. First, existing scheduling policies are limited by a small amount of available information
about inter-thread interactions, given the high sparsity of the Thread-Interaction Matrix. Second,
the profiling of certain statistics for adaptive scheduling (e.g., cache contention) relies on previous
phases of the execution, regardless of which metrics are used. This can incur expensive costs with
the increase of the number of workload threads, and is often rapidly changing due to the variance
of inter-thread interactions at different stages of the execution. Existing schedulers are restricted
by such an issue, which fail to explore a sufficient amount of possible thread permutations: such a
failure results in a limited amount of explorations, and can only lead to sub-optimal solutions when
accounting for the whole search space (i.e., all possible thread permutations)8. Note that such a
sparsity issue consistently exists in the Thread-Interaction Matrix, regardless of different scheduling
objectives: this is because reconfiguring scheduling objectives can not affect scheduling policies in
the current formalization; therefore, it can not make schedulers to explore more search space.

6Namely, scheduling policies are treated as the central consideration point for our categorization.
7The collected statistics are generally from hardware performance counters that can reflect the inter-thread re-

lationships in terms of the hardware usages. The values are collected for the assistance to the schedulers for better
decision-making, which are the same mindset at the design-time for these schedulers.

8This conjecture is based on the reasoning that: scheduling decisions are made without the knowledge of all
inter-thread relationships (e.g., potential hardware resource conflicts), by solely focusing on the scheduled threads
and neglecting the rest.
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2.3 A Quantitative Characterization on the Sparsity Issue of the Thread-Interaction
Matrix among Mainstream Schedulers

To better understand the severity of the sparsity issue, we conduct a characterization study using
five mainstream schedulers, and report the lowest two sparsity levels among the five schedulers.
The reported results are obtained by Random Scheduler (RS) and Global Round-Robin Scheduler
(G-RRS). Compared with the rest three, these two schedulers have lower sparsity, because they can
explore more kinds of thread permutations due to their scheduling policy designs. All schedulers are
experimented on PARSEC Benchmarks [18], and the number of workload threads is configured as 32
and 64 respectively. Our characterization setup is consistent with our experimental infrastructure
(16-core), which is detailed in Table 2. For each scheduler in our characterization, we record all
permutations of different running threads on each core, and represent the sparsity in each scheduler
design by the ratio of the recorded permutations to the number of all possible thread permuta-
tions9. Note that, for thread permutations, we consider both thread combinations and placements
(i.e., which core). The time interval for our recording is set as 100 nanoseconds, which is a finer
granularity compared to that of a context switch in our experimental settings. Figure 1 shows the
normalized results regarding the number of thread permutations explored by RS and G-RRS for
each benchmark; and we make two key observations.

Figure 1: A quantitative evaluation on the sparsity of the Thread-Interaction Matrix in percentage
of explored thread permutations (lower means sparsity is more severe), for Random scheduler and
Global Round-Robin scheduler.

• Observation 1: the sparsity is highly severe within the Thread-Interaction Matrix.
Our results reveal that the sparsity of the Thread-Interaction Matrix is extremely severe: across
all benchmarks, the explored number of thread permutations only occupies up to 2.10% of all
possible thread permutations. Therefore, building sophisticated heuristics upon such a coverage
can mostly lead to a sub-optimal solution, because there are still a large number of unexplored
thread permutations. Furthermore, the sparsity issue becomes more severe, when the number of
threads increases. For 64 threads, the explored number of thread permutations can only occupy up
to 0.23% of all possible thread permutations.
• Observation 2: the sparsity is impacted by both scheduling policies and workload
characteristics. Our results reveal that there exist varied trends of sparsity, when using different
schedulers for different benchmarks. Particularly, we observe that IO-intensive workloads make
the sparsity issue of schedulers less severe than compute-intensive workloads (e.g., blackscholes,
canneal). This is because IO-intensive workloads can incur more context switches, and the explored
number of possible thread permutations are higher due to the increased amount of context switches.

9For 32 threads, there are C
(
32
16

)
= 6, 010, 080, 390 possible thread permutations; and for 64 threads, there are

C
(
64
16

)
= 488, 526, 937, 079, 580 possible thread permutations.
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Our characterizations confirm that existing scheduler designs can cause an extremely-high level
of sparsity in the Thread-Interaction Matrix. Therefore, building sophisticated heuristics, upon such
a sparse matrix, makes the schedulers consider only a tiny subset of all possible thread permutations,
and such scheduling decisions shall only be considered sub-optimal since the whole search space is
not well-explored. Different from previous studies, we take a different view on the design of thread
schedulers: rather than improving the mechanism with a limited amount of available information
regarding thread interaction; can we effectively estimate all missing information from the Thread-
Interaction Matrix, and directly perform scheduling decisions based on such estimations? Therefore,
our goal in this work is to deliver a customizable and scalable solution for thread scheduling, which
can effectively estimate the missing values from the Thread-Interaction Matrix for diverse scheduling
objectives; and properly exploit such estimations for better scheduling.
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3 SLITS: Design Overview

We introduce Sparsity-Lightened Intelligent Thread Scheduling (SLITS), a general thread scheduler
design on multi-core architectures, by mitigating the sparsity issue of the Thread-Interaction Matrix.
We first introduce the workflow of SLITS (Section 3.1). Then we elaborate three key components
of SLITS, including Profiling Thread Interactions (Section 3.2), Estimating Missing Values in the
Thread-Interaction Matrix (Section 3.3) and Lazy Reschedule (Section 3.4).

3.1 SLITS Workflow

Figure 2 presents an overview of the design and implementations of SLITS. There are three main
components in SLITS to work serially, which include (1) profiling thread characteristics,(2) esti-
mating missing characteristics via Factorization Machine, and (3) Lazy Reschedule via customized
rescheduling policies. Here, we introduce each step in detail. As shown in Figure 2, first, in Step ➊,
the Thread-Interaction Matrix about different levels of inter-thread interactions is profiled; then, in
Step ➋, the sparsity in the primary Thread-Interaction Matrix will then be mitigated by leveraging
Factorization Machines (FM) to estimate the missing values; and finally, in Step ➌. the estimation
results will be used for Lazy Reschedule, where SLITS performs customized rescheduling policies
under a uniform trigger condition10.

Figure 2: SLITS Workflow

3.2 Step 1: Profiling Statistics for Thread-Interaction Matrix

Profiling thread-interaction statistics is to provide quantitative information, regarding the inter-
relationships among different threads. SLITS leverages the inter-thread statistics to form the
Thread-Interaction Matrix, by tracking the performance counters. In this work, we focus on
generally-accessible statistics on commercial processors (e.g., branch mispredictions, cache misses),
that are frequently updated by hardware performance counters with low overhead [38, 7]: these
statistics are easily-accessible by incorporating interfaces such as perf_events. Note that SLITS can

10Note that Step ➍ refers to the customized scheduling policy in SLITS, which we cover more details in Section 4.3.
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also benefit from the profile of specialized statistics, with the support of specialized hardware mon-
itors (e.g., load misses, sharing misses [28])11. With these supports, SLITS can utilize a diverse set
of low-level statistics without additional hardware overheads, to obtain the inter-thread interactions
among different threads.

3.3 Step 2: Estimating Missing Statistics via Factorization Machines

Deploying matrix-oriented approaches (e.g., Collaborative Filtering, denoted as CF), for resource
management and scheduling, are already discussed (e.g., Paragon [26] and CuttleSys [48]). However,
the outstanding issue from CF-based approaches is that: the sparsity issue is highly severe when
constructing the matrix. Such an issue in CF has already been evidenced in commercial recom-
mender systems, which the original design goal of CF targets [6]. We elaborate this issue in more
detail. CF delivers User-Item Recommendation in the sparse User-Item matrix, which analyzes
the patterns of co-occurrence from the past behaviors of users12. Since the analysis of user/item
similarities usually demands correlation statistics, the sparsity issue prevents CF to deliver proper
recommendations with a large-yet-mostly-unavailable matrix.

To address the sparsity issue when estimating missing statistics, Factorization Machines (FM)
are proposed and proved to be very effective for online recommender systems [66]. As the sec-
ond step of SLITS, we utilize Factorization Machines to effectively lighten the sparsity in the
Thread-Interaction Matrix, so that scheduling policies can properly exploit a sufficient amount of
information, in terms of inter-thread relationships, in a quantitative manner. Such a design choice
allows SLITS to be combined with a variety of scheduling policies, to potentially satisfy different
scheduling objectives (if needed/required at design time).

The power of Factorization Machines is delivered by its focus on Feature Interaction. Originally
derived from Matrix Factorization, Factorization Machines are a novel class of machine learning
models, that can estimate the interactions between unobserved variables by using factorized param-
eters, with generality and linear training-time complexity on large-yet-sparse datasets. FM achieves
better generality by using real-valued feature vectors to represent, learn and infer the unobserved
variable interactions. Hence, we consider FM as a suitable candidate for the estimator of the Thread-
Interaction Matrix, since every positively-defined matrix can be transformed into real-valued vectors.
Through FM, SLITS can effectively complement the extremely-sparse Thread-Interaction Matrix
via estimation. To ensure the consistency of understanding, we brief Factorization Machines below.
We denote that FM models the interactions between two variables as follow13.

ŷ(x) := w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

⟨vi,vj⟩xixj (1)

w0 ∈ R, w ∈ Rn, V ∈ Rn×k (2)

where n is the number of features, k is the number of factors. A row vector vi depicts the k
embedding latent factors for the ith feature.

11It indicates that: the profiling process can be better supported with advanced studies on performance character-
izations (e.g., [43, 83]), and these studies can be performed (e.g., via compiler-assisted approaches [45], etc.).

12It is usually done by quantifying user/item similarities (e.g., Pearson Correlation Coefficient [61]).
13In Equation 1: w0 is the global bias, wi represents the weight of ith feature; Equation 2 describes the domain

set of model parameters, to complement Equation 1; and Equation 3 depicts details from the inner product of two
vectors of length k and ⟨vi,vj⟩ is the weight that profile the interactions between vi and vj .
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⟨vi,vj⟩ :=
k∑

f=1

vi,f · vj,f (3)

The generality of FM is credited to the weighted values of feature combination of xi and xj ,
which is the inner product ⟨vi,vj⟩. For each feature, FM learns a row vector of size k, which can
be abstracted as single feature embedding. Therefore, for features say xn and xm that have never
appeared together in the history, which their correlations are expected to be unknown, can now
be learned and inferred by FM. As long as xn has feature combinations with any other features
before, FM can learn its own corresponding embedding vector. Thus, the feature combinations
of xn and xm can be used by leveraging their own corresponding embedding vectors learned from
the historical records and their inner product that represents the weight of this new combination,
achieving the estimation on a large sparse dataset based on limited knowledge. Also, FM has linear
time complexity. The primary FM model equation (Equation 1) which is in O(kn2) time complexity,
can be simplified to O(kn) time complexity by reformulating the equation using factorization (for
detailed proof, we refer readers to the original paper [66]).

3.4 Step 3: Lazy Reschedule

The trigger condition (for rescheduling) and the rescheduling policy are two major design points,
that can impact the overall costs of rescheduling. The final step of SLITS first exploits proper
trigger conditions to reschedule threads, based on different scheduling policies. Since SLITS can be
customized for different scheduling objectives (detailed in Section 4.3), we deliver a general condition
to trigger rescheduling. We propose Lazy Reschedule, to effectively balance the tradeoffs between
rescheduling costs and performance gains from different scheduling policies. Prior work (e.g., Round-
Robin Scheduler) set the trigger condition statically, by periodically rescheduling new threads.
However, this approach has two constraints that can cause significant performance overheads, which
we brief them as follow.

1. The time interval for periodic scheduling needs to be manually set, which demands extra
knowledge about the workloads. The assumption does not apply to real-world scenarios, where
the workload threads may change in terms of either quantity or categories (i.e., compute/IO-
intensive). Therefore, a suitable determination of time interval in a fixed manner is too hard
to be determined proactively.

2. When the trigger condition is satisfied, the scheduler needs to pause the running threads
and schedule new threads, the costs of context switches hereby can potentially cause great
performance overheads, which can outweigh the benefits from thread rescheduling.

Lazy Reschedule, as the trigger condition for thread rescheduling, can balance the costs of reschedul-
ing and the benefits of better thread permutations. The idea of Lazy Reschedule is simple: setting
the trigger condition to reschedule based on whenever any running thread stalls/exits. The rationale
comes from two simple-yet-effective considerations, as described below:

1. Compared to fixed periodic rescheduling polices, scheduling new threads at the time of thread
stalls/exits can cause less interference of workload thread executions. This is evidenced by
our experimental results from the breakdown analysis (as detailed in Section 6.5).

2. There are no additional hardware overheads to enable such trigger conditions for thread
rescheduling. Therefore, the setting of such trigger conditions allows SLITS to be easily
implemented, reconfigured and customized furthermore.
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Note that the rationale behind this method also consider the situation that CPUs are overloaded:
Lazy Reschedule can also minimize the competition between workload threads and FM module, and
our evaluation results (detailed in Section 5) also take this into the consideration for a quantitative
comparison.
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4 SLITS: Detailed Designs

Based on SLITS design, we present detailed designs of SLITS to enhance its practicality. We
first propose Thread Interaction Statistics (TIS) Cache, to facilitate the storage of the Thread-
Interaction Matrix while guaranteeing fast accesses (Section 4.1). Then we detail how SLITS uti-
lizes the Thread-Interaction Matrix in Factorization Machines, with a particular focus on Thread
Interaction Statistics (Section 4.2). Finally, we demonstrate the feasibility of SLITS customization,
via two concrete examples of SLITS variants for different scheduling objectives including Resource
Contention and Fairness (Section 4.3).

4.1 Thread Interaction Statistics Cache (TIS-Cache)

To store, update and utilize statistics from Thread-Interaction Matrix efficiently, it is essential
to provide a separate module to store such a matrix, while guaranteeing fast access. In SLITS
design, we propose Thread Interaction Statistics Cache (TIS-Cache), by exploiting variants based
on recently-discussed L4 eDRAM caches (e.g., [13, 54, 63]). Among a large body of studies on large
L4 caches [54, 63, 69, 41, 40, 78, 37, 77], we follow the latency-optimized Alloy Cache design for
TIS-Cache design [63]. Similar to Alloy, TIS-Cache stores a tag and data pair within the same
DRAM row (page) to access them with a single DRAM command. TIS-Cache also uses a direct-
mapped organization to reduce cache hit latency and to better exploit spatial locality by mapping
consecutively-addressed cache lines to the same DRAM row. The consequent impact of reduced
associativity is relatively minor. Following the most recent trends, we use on-package eDRAM
instead of ordinary DRAM chips to further reduce access latency.

The consideration of how large the TIS-Cache shall be is critical in SLITS design. Instead of
analyzing the required capacity of TIS-Cache under the scope of the current SLITS design, we take
the current design of L4 Cache to reason about how large a Thread-Interaction Matrix can be stored.
The current L4 Cache design can reach up to 128MB capacity [34, 75]. Then, we estimate the size of
a Thread-Interaction Matrix of the workload threads, since it can be expressed as the square of the
number of working threads (in bytes): given a 128MB TIS-Cache, the Thread-Interaction Matrix
can contain the statistics for 11,585 working threads. Hence, the current design of TIS-Cache is
feasible, and sufficient to handle Thread-Interaction Matrix for a single chiplet (i.e. under 16-core
for our evaluation settings, which are also common on current multi-core products). Table 1 shows
the number of working threads and the required capacity for TIS-Cache, under our experimental
settings. Our analysis confirms that TIS-Cache can be shrunk to a relatively small size, to facilitate
the need for a limited area and power budget.

Table 1: The Number of Working Threads and the Required TIS-Cache Capacity accordingly.

Threads No. 32 64 128

TIS-Cache 1KB
(0.001MB)

4KB
(0.004MB)

16KB
(0.016MB)

4.2 Using Factorization Machines for Thread-Interaction Matrix

The FM estimation is executed by SLITS on the stalled/idle cores, which do not affect other
running cores. After accessing statistics from the Thread-Interaction Matrix, the scheduler thread
can perform the estimation and further conduct a customized thread scheduling policy based on
the estimation outputs. To ease the understanding of how such a procedure works, we hereby
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elaborate on how the FM module of SLITS abstracts and exploits input vectors from the Thread-
Interaction Matrix, to address the sparsity issue via a concrete example. We first denote the
profiled statistics O in the Thread-Interaction Matrix in the format of (rti, wtj , Mij) which stands
for (RunningThreadID,WaitingThreadID,InterThreadStat14), and represent thread interactions that
are useful to estimate the unavailable statistics between rt1 and wt32 as below.

O = {(rt1, wt33, 453), (rt1, wt62, 140), (rt34, wt32, 655),
(rt34, wt62, 670), (rt61, wt33, 115), (rt61, wt62, 640)}

To estimate the missing statistics between rt1 and wt32 using the above statistics, factorized
parameters ⟨vrt1 ,vwt32⟩ can achieve this purpose. Note that the execution can simultaneously
perform on multiple vectors and we elaborate the rationale of this approach using the following
three steps. First, rt34 and rt61 has similar factorized vectors vrt34 and vrt62 since they obtain
similar statistics when co-running with thread 62. This means ⟨vrt34 ,vwt62⟩ and ⟨vrt61 ,vwt62⟩ have
to be similar. The factorized vector for rt1 is different from that of rt61 as they have different
statistics with threads 62 and 33. Next, the factorized vectors of wt62 and wt32 are inclined to be
similar as rt34 has similar trends when co-running with these two threads separately. Therefore, it
indicates that the dot product of rt1 and wt32 will be similar to the one of rt1 and wt62, which will
also cause high similarity in inter-thread interaction statistics.

4.3 Customizing SLITS for Different Objectives

SLITS can be customized based on different scheduling objectives, by properly co-designing Thread-
Interaction Matrix and the scheduling policy. Hereby, we propose two SLITS variants to address two
scheduling objectives (i.e., Resource Contention and Fairness) respectively, as the proof-of-concept
of the customizability of SLITS15. We first describe SLITS-(Contention), a variant to improve the
performance by mitigating resource contention (Section 4.3.1); and we introduce SLITS-(Fairness),
a variant to improve the performance by preserving the fairness among all threads (Section 4.3.2).

4.3.1 SLITS-(Contention): Mitigating Resource Contention

SLITS-(Contention), as a motivating design for mitigating Resource Contention, needs to (1) con-
figure Thread-Interaction Matrix to use a particular type of statistics for resource contention; and
(2) design the scheduling policy to minimize the level of the contention on such a resource. For
Thread-Interaction Matrix, SLITS-(Contention) uses Last-Level-Cache (LLC) Misses as the metric
to measure thread contention. This design choice is built upon a series of prior work on Resource
Contention [39, 72, 35, 81], which demonstrates that: LLC Misses is one of the most representative
metric to abstract resource contention for threads on multi-/many-core architectures. As for the
scheduling policy, SLITS-(Contention) simply champions the thread with the least amount of (esti-
mated) contention for minimizing resource contention. There are three steps. ➊ SLITS-(Contention)
filters out threads that are not available to run on the idle core from all waiting threads. ➋ the esti-
mation results from FM are averaged based on running threads, and the results on waiting threads
allow SLITS-(Contention) to rank them and select the most suitable thread(s) to run, which has the
maximum value from the average results of the FM estimation. ➌ The selected thread is resched-
uled to the idle core, and the corresponding auxiliary features (e.g., last co-run threads on different
cores) are updated for further inter-thread interaction profiling and FM estimations.

14Hereby, we use LLC Misses as an example. There are no additional challenges to use other types of the metrics.
15Indeed, SLITS can be designed with more sophisticated types of profiled statistics and detailed scheduling policies,

and how these design choices can bring trade-offs in SLITS. We believe this would an interesting direction for future
exploration of novel scheduler designs.
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4.3.2 SLITS-(Fairness): Preserving Thread Fairness

Similar to the design methodology above, SLITS-(Fairness) requires properly co-design of these two
components by (1) configuring the Thread-Interaction Matrix to use the information for quantitative
reflections of thread fairness; and (2) utilizing a scheduling policy to ensure fairness across all
threads. For Thread-Interaction Matrix, SLITS-(Fairness) applies Instruction per Cycle (IPC) to
quantitatively examine the fairness of each thread. This design choice is built upon a line of prior
work [44, 14, 15], which demonstrates that: IPC is proper to examine the fairness by ensuring
the distribution of workload threads across cores, since the fairness is determined by the allocated
hardware resources for each thread (i.e., CPU cycles). As for scheduling policy, SLITS-(Fairness)
utilizes a simple-yet-effective approach: by grouping all threads with the IPC below the median,
SLITS-(Fairness) randomly selects a thread with such a subset of threads. This is because SLITS-
(Fairness) only needs to exploit partial order information to ensure the fairness, rather than always
championing the most/least one.

4.3.3 Customizing SLITS for More Scheduling Objectives

SLITS can be customized for more scheduling objectives, following the methodology described
above. We clarify that we are well aware that priority is also an important thread scheduling
objective (e.g., [68, 84]). However, from the perspective of SLITS formalization, we can assume
priority-oriented Scheduling objectives share the core spirits as fairness-oriented ones: they are
fundamentally similar since scheduling for fairness can be treated as a dynamic priority problem.
Hence, due to the limited space, we do not cover the design for SLITS-(Priority) but such a design
goal is certainly feasible under our formalization and methodology.
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5 Experimental Methodology

We first describe the experimental infrastructure in Section 5.1. Then we enumerate all comparison
points in our experimental studies in Section 5.2. Next we elaborate the configurations of all
workloads in Section 5.3. Finally, we describe performance metrics during our study in Section 5.4.

5.1 Experimental Infrastructure

We use an extended version of SNIPER [21], a fast and accurate x86 simulator that supports
detailed simulations for the multi-threaded workload. Table 2 provides detailed configurations of
our simulation infrastructure. We use Pin tool [56] as the frontend. To integrate Factorization
Machine (FM) with SNIPER, we exploit the FM module from the xLearn library [3], the state-of-
the-art package for large-scale Machine Learning system developments and deployments. To obtain
realistic modeling of hardware scheduling, we account for all overheads on storing, updating and
computing of the FM module, by extending the SNIPER simulator.

Table 2: Detailed configurations of the simulated system.

Components Specifications
Processor 16-core Intel Xeon X5550 Gainestown,

2.6GHZ, 128-entry instruction window
Branch Misprediction Penalty 8 cycles

Branch Mispredictor Size 1024
Reorder Buffer Size 128
L1 I-Cache/D-Cache 32/32KB, 4/8-way assoc, LRU Replacement Policy, SRAM

L2 Cache 256KB, 8-way assoc, LRU Replacement Policy, SRAM
L3 Cache 8MB, 16-way assoc, SRAM

TIS Cache (L4 Cache) 16KB, 1 assoc, eDRAM
DRAM 4 controllers, 4 DIMMs/controller,

8 chips/DIMM, 45ns access time

5.2 Comparison Points

To provide a comprehensive coverage of comparison points, we select four general-purpose thread
schedulers for examining the effectiveness of two variants of SLITS. Therefore, comparison points
during our experimental studies include:

1. Global Round-Robin Scheduler (denoted as G-RRS): G-RRS is selected as baseline
for our experiment, which schedules waiting threads, grouped in a global queue, to each idle
core in a Round-Robin manner.

2. Per-Core Round-Robin Scheduler (denoted as P-RRS): P-RRS groups threads into
multiple waiting queues for different cores, and schedule them within each core via a Round-
Robin manner.

3. Work-Stealing Scheduler (denoted as WSS): Work-stealing scheduler periodically sets
a random core as the thieve and “steals" one waiting thread from a random victim core’s
waiting queues if the thief has empty waiting queues. Otherwise, all the cores schedule their
own threads in a Round-Robin manner.
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4. Completely Fair Scheduler (denoted as CFS): CFS is the de facto design for thread
scheduling, which is currently implemented as the Linux default scheduler16. CFS assigns
each thread with equal costs for fairness, and schedules thread from per-core waiting queues,
where threads are sorted by Red-Black Trees in a temporal order.

5. SLITS-(Contention): SLITS variant for mitigating resource contention, by using LLC
Misses as the metric (as described in Section 4.3.1).

6. SLITS-(Fairness): SLITS variant for preserving the fairness (as described in Section 4.3.2).

5.3 Workload Configurations

We select representative benchmarks, which contain both computation-intensive and IO-intensive
workloads, from the PARSEC Benchmark Suite [18] and SPLASH-2 Benchmarks [80] including High
Performance Computing applications across multiple domains. More specifically, we configure sim-
large input size for blackscholes, canneal, facesim, fluidanimate, swaptions and vips from PARSEC
benchmarks and ocean.cont, ocean.ncont, water.nsq, fft_O1 and raytrace from SPLASH-2 bench-
marks. All experiments are run on 16-core settings with diverse workload thread configurations
(i.e., 32/64/128 threads, with 2/4/8 threads assigned to each core for WSS, P-RRS, CFS and two
variants of SLITS).

5.4 Performance Metrics

We measure the system performance using the speedup over the baseline schedulers (i.e., Global
Round-Robin Scheduler). To minimize the impacts of performance variations, we run 1,000 times
for each evaluated workload and report the average results and measure the end-to-end execution
time for each run. Note that it is infeasible to examine the effectiveness of SLITS, by using the
accuracy metrics directly, since the statistics of thread interaction can not be formed as the ground
truth with the current system formalization, due to the non-determinism of thread interactions.

16It is notable to mention that, [55] identifies a serious performance bug of CFS. Quoted from [55]: “The scheduler
unintentionally and for a long time leaves cores idle while there are runnable threads waiting in runqueues". We do
not disadvantage CFS in our experimental studies.
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6 Experimental Results

In this section, we report the evaluation results by comparing two SLITS variants against all general-
purpose schedulers, in a diverse set of thread-to-core configurations. Specifically, we first report the
experimental results when configuring SLITS to reduce Resource Contention; and to guarantee
Fairness during thread scheduling under different scalability settings (Section 6.1). Then we present
our extensive studies, including (1) a breakdown analysis, to examine the cache behaviors of SLITS
(Section 6.2); (2) a isolation study by disabling the FM module and Laze Reschedule mechanism
respectively (Section 6.3); (3) a sensitivity study by varying the estimation coverage of SLITS,
to justify the effectiveness of estimating missing values (Section 6.4); (4) an ablation study to
showcase the merits of the proposed Lazy Reschedule mechanism, over the periodic scheduling
policies (Section 6.5); and (5) an analysis on the overhead of SLITS in terms of chip area, power
and latency on commercial processors (Section 6.6).

6.1 SLITS versus Other Schedulers

We report the performance results between SLITS using Resource Contention/Fairness as the
scheduling objective and all the selected schedulers across all the benchmarks. Figure 3 reports
the results of SLITS (i.e., SLITS-(Contention) for scheduling for minimum resource contention and
SLITS-(Fairness) for Fairness) when comparing the performance with the baseline scheduler in terms
of the speedup. We make three observations.

Figure 3: Speedup over G-RRS under 16-core and 32/64/128-thread configurations on PARSEC
and SPLASH2 benchmark suites, with 2/4/8 threads assigned to each core. Note that SLITS-
(Contention) and SLITS-(Fairness) refers to SLITS using cache misses and IPC for abstracting the
Thread-Interaction Matrix.

First, SLITS variants always deliver considerable performance benefits, regardless of which dif-
ferent scheduling objective is customized for (i.e., mitigating Resource Contention or preserving
Fairness) over all general-purpose schedulers. When customized for reducing Resource Contention,
SLITS achieves 1.27X, 1.18X, 1.12X, and 1.09X speedup, compared with G-RRS, WSS, P-RRS,
and CFS respectively, averaged across all workloads. When customized for Fairness, SLITS achieves
1.25X, 1.14X, 1.09X, and 1.06X speedup, compared with G-RRS, WSS, P-RRS, and CFS respec-
tively, averaged across all workloads. Our results show that SLITS design can greatly improve
the overall system performance. Moreover, the consistency between performance benefits, obtained
from two SLITS variants, demonstrates that the merits of SLITS customizability: SLITS can be
customizable to different scheduling objectives, and configuring different scheduling objectives can
be easily achieved by changing metrics; and they can achieve the performance benefits consistently.
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Second, SLITS exhibits great scalability, by outperforming all general-purpose schedulers with
different settings of the thread amount. For most of the selected benchmarks (e.g., canneal, flu-
idanimate, fft_O1, raytrace), the performance benefits of SLITS increase gradually from 32 threads
to 128 threads, and peaks at the setting of 128 workload threads. The relatively-low performance
benefits in 32-thread settings are due to the narrowed optimization space, since only two threads
are assigned to each core. Though, for some other workloads (e.g., facesim in 64-thread setting,
ocean.ncont in 128-thread setting), SLITS achieves sub-optimal performance, compared with the
benefits on the same workload under different scalability settings: we argue that it is because the
baseline scheduler (i.e., G-RRS) can obtain better performance in these cases. SLITS still achieves
an increasing trend, in terms of the speedup, from the 32-thread setting to the 128-thread setting
over other schedulers (e.g., speedup over CFS by 1.07X, 1.08X, and 1.09X on facesim in 32, 64, and
128-thread settings). Therefore, this justifies that SLITS has great potential to be configured for
different scheduling objectives in multi-threaded workloads, where the number of cores and threads
can be up to thousands.

Third, the benefits of SLITS correlate with the workload characteristics. SLITS obtains more
speedup on workloads with more instructions or synchronization primitives. For instance, among all
the selected PARSEC benchmarks, SLITS achieves more speedup on facesim, fluidanimate and vips
than on canneal and blackcholes, compared with the results from all general-purpose schedulers. This
is because the former type of benchmarks has more instructions or synchronization primitives than
the latter one [80, 18]. Such characteristics benefit SLITS in the following two ways: (1) the profiling
of run-time inter-thread interactions can be more accurate when more instructions are executed,
which can further benefit the estimation of FM; and (2) there are more re-scheduling opportunities
for optimizing scheduling decisions, when a large quantity of synchronization primitives exist during
the execution, and Lazy Reschedule can achieve more benefits, given a longer period of the execution.
Similar observations also apply to all the selected benchmarks from SPLASH-2, where the speedup
of SLITS on water.nsq and raytrace overrides the speedup on fft_O1, ocean.cont and ocean.ncont.

6.2 Breakdown Analysis of SLITS

To better understand the source of the performance benefits from SLITS, we reveal the cache
behaviors of SLITS and the baseline schedulers under the same evaluation settings (as described in
Section 6.1). Specifically, we measure the cache hit counts and the normalized Cycles Per Instruction
(CPI) for each cache level. We configure each benchmark with 64 workload threads. Note that we
only report the best cache utilization results from all baseline schedulers; and the worst results of
SLITS among SLITS-(Fairness) and SLITS-(Contention), based on our studies from Section 6.1.

Figure 4 reports the experimental results. We make two observations from the experimental
results. We observe that, in terms of the cycle stack usages, SLITS achieves an average reduction of
10.05% cycles on the L3 cache. This reveals that the latency penalty, for fetching data from the L3
cache, is greatly mitigated by SLITS. Therefore, we conclude that the performance benefits from
SLITS are credited to the better utilization of on-chip caches.

Figure 5 reports the detailed results in terms of the L1 D-Cache Hits. We confirm that SLITS
benefits from a great increase of the cache hits. On average, SLITS obtains 21.45% L1 D-Cache
hits improvement across all the selected benchmarks, compared with the baseline schedulers. This
is because the FM module can effectively estimate inter-thread relationships, which leads to the
better utilization of on-chip caches.
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Figure 4: Normalized CPI percentage in L1 D-Cache, L2 cache and L3 cache of SLITS and baseline
schedulers. We report the best results among all baseline schedulers and the worst results of SLITS.

Figure 5: Normalized L1 D-Cache hits of SLITS and baseline schedulers.We report the best results
among all baseline schedulers and the worst results of SLITS.

6.3 Breakdown Analysis of Different SLITS Components

To better understand the benefits of each core module of SLITS, we conduct a breakdown analysis, to
differentiate the extent of benefits from the FM module and Lazy Reschedule mechanism respectively.
We replace these two modules separately with the de facto scheduling designs, and compare their
performance with the full design of SLITS on all the selected benchmarks. More specifically, for
isolating the FM module, we disable the Lazy Reschedule mechanism by setting the trigger condition
of SLITS into preemptive ones, which allocates each workload thread a pre-defined time quota (i.e.,
the same time quota as P-RRS’s); and periodically triggers SLITS rescheduling once the quota is
met for the running thread on each core; as for isolating the Lazy Reschedule mechanism, we disable
the FM module and directly make it schedule threads in a Round-Robin manner on each core,
except that there is no pre-defined quota for workload threads (i.e., non-preemptive rescheduling).
We run these two experiments under the settings of 16 cores and 64-thread configurations. The rest
of the setup is consistent with other experiments.

Figure 6 reports the experimental results of running individual module on the selected bench-
marks. We make two observations. First, both of these two modules contribute greatly to the
overall speedup. By disabling either of these two modules, SLITS encounters about 24.23%-32.73%
performance degradation, compared with SLITS with both FM module and Lazy Reschedule mech-
anism. This justifies the feasibility of both modules. Second, disabling the FM module causes more
loss of the speedup, compared with the loss caused by disabling Lazy Reschedule. We assume that
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Figure 6: Performance slowdown compared with full SLITS by disabling FM module and Lazy
Reschedule separately. SLITS w/o FM indicates SLITS scheduling without FM module and SLITS
w/o Lazy Reschedule represents SLITS scheduling without Lazy Reschedule.

this phenomenon is because the feasibility of FM, to address the sparsity in the Thread-Interaction
Matrix by estimating missing values, plays a key role in bringing performance benefits (compared
with solely changing the trigger conditions to improve the performance).

6.4 Different Coverage of FM Module

To examine the sensitivity of the impacts from Factorization Machines (FM), we compare the
performance of SLITS by setting different levels of FM coverage (when estimating missing values),
which refers to the ratio of the Thread-Interaction Matrix using FM estimation. We set the FM
coverage ratio in SLITS as 0%, 25%, 50%, 75% and 100%, and the default setting of SLITS is 100%
FM coverage. Note that SLITS with R% FM coverage (R ∈ {25, 50, 75}) means that r% of the
threads are scheduled scheduled using FM; and the rest is scheduled using Round-Robin policy./

Figure 7: Speedup of SLITS with different levels of FM coverage over SLITS with 0% FM coverage.
N% FM coverage indicates N% of the threads are scheduled using FM; and the rest are scheduled
using Round-Robin policy.
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Figure 7 reports the speedup of schedulers with different FM coverage, compared with P-RRS
on six PARSEC benchmarks. We make two observations. First, the speedup exhibits a positive
correlation with the increasing levels of FM coverage. On all workloads, SLITS with 100% FM cov-
erage achieves the best speedup, compared with the baseline settings; and the performance degrades
(close to) linearly, with the decrease of the level of FM coverage. This justifies the effectiveness of
FM-driven estimation in the design of SLITS. Second, on most of the benchmarks, SLITS variants,
without the full coverage of FM-driven estimation, can cause a significant slowdown, compared with
SLITS with no coverage from FM. For instance, SLITS with 0% coverage outperforms SLITS with
25% coverage on all the benchmarks. This is because SLITS with limited coverage can only utilize
a random subset for sparsity mitigation, which makes scheduling decisions sub-optimal; and such
impacts are amplified with the decrease of the FM coverage.

6.5 Suitability of Lazy Reschedule

To examine the suitability of the proposed Lazy Reschedule mechanism, we rigorously compare
the scheduler performance of SLITS against various periodic scheduling policies (in a fixed time-
window setting)17 on the representative benchmarks from our experimental settings. We configure
the time interval for different periodic scheduling policies as 0.5ms, 1ms and 1.5ms, which peri-
odically reschedule the running thread on a core while the determined time interval is reached18.
We select benchmarks from the previous experiments that have a large number of instructions and
synchronization primitives, to balance the number of rescheduling conducted by Lazy Reschedule
from SLITS and periodic scheduling policies.

Figure 8: Slowdown of several periodic (i.e., fixed-window) scheduling policies, with different settings
of time-interval size, over Lazy Reschedule.

Figure 8 shows the experimental results of the Lazy Reschedule and the comparisons against
periodic scheduling policies. We make two observations. First, the Lazy Reschedule mechanism
outperforms all the periodic scheduling policies on the selected benchmarks. Averaged across all
the benchmarks, the Lazy Reschedule mechanism achieves 11.29%, 10.82% and 10.93% performance
benefits, over periodic scheduling policies with time intervals configured at 0.5ms, 1ms and 1.5ms re-
spectively. The underlying rationale for such benefits is that: periodic rescheduling incurs expensive-
yet-unnecessary context switches, as well as resource waste for schedulers. Second, different periodic

17We use periodic scheduling to refer to fixed time-window scheduling in the rest of this section, for the consistency.
18The methodology for core selection is in a Round-Robin manner.
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scheduling policies have varied performances on the selected benchmarks. For instance, a schedul-
ing policy with a fixed-time window of 0.5ms achieves the best performance on PARSEC canneal
benchmark (excluding Lazy Reschedule); whereas a scheduling policy with a fixed-time window of
1.5ms achieves the best results on SPLASH2 water.nsq benchmark. This consolidates our hypothesis
that periodic scheduling policies, such as fixed-window scheduling, lack generality and practicality:
since it requires prior knowledge to manually set up the time window of the scheduler to achieve
a considerably-good performance. Rather than the inflexibility of periodic scheduling policies, the
Lazy Reschedule mechanism of SLITS relaxes such constraints, and it can be complemented with
various types of customized scheduling policies.

6.6 Overhead Analysis

We accurately estimate the chip and power overheads of SLITS (namely the overheads of TIS-
Cache), based on Alloy Cache [63]. To contain the Thread-Interaction Matrix from our experimental
settings (i.e. up to 128 threads for 16 cores), the size of TIS-Cache is required to be 16KB. In this
case, TIS-Cache consumes 0.21 mm2 of area and 35.27 mW of power in each core19. Then, we show
the relative overhead of SLITS on two commercial processors (i.e., 18/28-Core Skylake processors
[1, 2]) in terms of chip area and power in Table 3, where TIS-Cache requires <0.85% chip area and
incurs <0.48% overhead on these processors. Note that, as we covered previously, the TIS-Cache
design can be scaled to a much larger size if needed (i.e., up to 128MB eDRAM Cache in current
products [34, 75]. If needed, the overheads from TIS-Cache are expected to be similar to recent
proposals (e.g., [13]). Therefore, we conclude that SLITS incurs negligible hardware overheads.

Table 3: Area and Power Overhead of SLITS on Commercial Processors.

Processors Area Power
18-core Skylake 6150, 165W TDP [1] 0.79% 0.38%

28-core Skylake 8180M, 205W TDP [2] 0.85% 0.48%

19We replicate Thread-Interaction Matrix on each core, so that all cores can deliver fast access to this information.
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7 Related Works

To the best of our knowledge, SLITS is the first work to ➊ provide a unified formalization of exist-
ing thread scheduler designs; ➋ concretely identify, address and mitigate the sparsity in multi-core
thread scheduling; ➌ propose a Machine-Learning-based thread scheduler to improve the perfor-
mance of multi-core architectures. In this section, we brief relevant works to justify the novelty.

7.1 Scheduler Designs for Fixed Scheduling Objectives

Most existing schedulers are designed with definite scheduling objectives, which can be broken into
inter-thread statistics and further be effectively profiled using the Thread-Interaction Matrix. A
major part of these schedulers aims to mitigate hardware contention in multi-core architectures
to improve the performance, by leveraging run-time inter-thread statistics of resource contention
in the Thread-Interaction Matrix and adaptively minimizing resource contention [46, 20, 17, 4,
32, 76]. Other scheduling policies are for Fairness and Priority, which we group together since
Fairness can be viewed as dynamic priority. The values within Thread-Interaction Matrix can
be constant in static-priority scheduling and the scheduling policies are usually designed as strict
rules under certain conditions (e.g., pre-defined priority [22], Deadline-First Scheduling [51, 5, 57,
23], Deterministic Task Dependencies [67, 33], Round-Robin schedulers, Work-Stealing scheduling
policy and its variants [27, 12, 47, 62, 52]). As for dynamic scheduling objectives, Pfair scheduling
algorithms [14, 15] and its variants [10, 11] schedule both periodic [8, 53] and sporadic tasks [9, 74]
on multiprocessors, where the value types from Thread-Interaction Matrix can be represented via
corresponding metrics for dynamic priority. The novelty of SLITS, compared with the above works
is two-fold: (1) SLITS can be customized with different scheduling objectives by configuring user-
defined metrics and adjusting scheduling policies; and (2) SLITS is a Machine-Learning-based thread
scheduler that effectively addresses the sparsity issue, which are overlooked by prior work.

7.2 Heuristic/Statistical-Approach-based Schedulers Designs

There are also a few proposals focusing on improving thread schedulers by employing more so-
phisticated heuristic/statistical methods. As covered above, all schedulers for mitigating resource
contention can be classified as heuristic schedulers, since they always champion the optimal thread
to reschedule (based on their limited subset of available statistics) [46, 20, 17, 4, 32, 76]. Besides
heuristic methods, there are also statistical methods for better scheduler designs [65, 64]. Compared
with these proposals, SLITS addresses the overlooked sparsity issue of the Thread-Interaction Ma-
trix, and leverages Factorization Machines to mitigate this issue. Moreover, the above efforts can
be potentially synergistic with SLITS, by coupling them as (parts of) scheduling policies of SLITS.

7.3 Exploiting Machine Learning Techniques to Assist the Schedulers

Exploiting Machine Learning (ML) techniques also receive some attention. One line of works aims
to deliver accurate thread-interaction estimation for applications on modern multi-core architectures
on resource contention [58, 50, 49]. The other line of works exploits ML techniques for coarse-grained
task scheduling (i.e., process), such as [59, 60]. Compared with these prior work, SLITS (1) is the
first machine learning-based scheduler by leveraging Factorization Machines as its core module, to
provide the customizability for different scheduling objectives; (2) allows fine-grained scheduling
(i.e. thread) and on-the-fly reconfiguration of scheduling objectives; and (3) mitigate the sparsity
issue in the Thread-Interaction Matrix.
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8 Conclusions and Implications

8.1 Conclusion from this work

We introduce SLITS (Sparsity-Lightened Intelligent Thread Scheduling), the first intelligent thread
scheduling design to mitigate the inherent sparsity in the Thread-Interaction Matrix. SLITS ex-
ploits Factorization Machines to estimate the threads while maintaining customizability for different
scheduling objectives, with a uniform mechanism called Lazy Reschedule to effectively balance the
costs between rescheduling costs and performance gains. We introduce hardware modifications to
support SLITS and concretely demonstrate how SLITS can be customized with different scheduling
objectives. We extensively analyze the benefits of SLITS in terms of performance and scalability;
and perform a detailed breakdown analysis to understand the source benefits of SLITS.

8.2 Implications: Generality and Applicability

Generality. Credited to the generality of SLITS design, it is potentially applicable to a variety
of thread scheduling scenarios. SLITS can be applied for processors with Simultaneous Multi-
Threading (SMT)/Hyper-Threading enabled, where multiple logical cores share the physical cores20.
Therefore, it is highly demanded to schedule threads on the same physical core with the minimum
level of resource contention. A line of works attempts to address this issue for better performance
(e.g., Symbiosis Scheduler and its derivatives [71, 29, 31, 19]. In this manner, the key to delivering
proper scheduling decisions is to exploit the contention statistics of different threads. SLITS can
significantly benefit such scheduling by addressing the missing statistics on resource contention,
namely the sparsity issue in the Thread-Interaction Matrix (configured for resource contention)).

Though the current design is in single-chiplet, we envision SLITS can be beneficial to multi-
chiplet scheduling due to the following reasons: ➊ our proposed TIS-Cache can host a large scale
of sparse TIM, generated by the huge number of threads among multi-chiplet packages, following a
256MB cost-effective L4 eDRAM cache for multi-chiplet packages [63]; and ➋ by co-designing the
TIM and scheduling policy SLITS can improve the complex resource management on multi-chiplet,
which are generally heterogeneous chiplets within a package in the current trend. There are also a
number of works in this direction (e.g., PIE [25]).
Applicability. The outstanding difference between our design and prior arts is that: SLITS can
enable temporal variations for different scheduling objectives. Since the customizability of
SLITS only requires (1) reconfiguration of types of statistics within the Thread-Interaction Matrix;
and (2) different scheduling policies based on different scheduling objectives. Therefore, it shall be
feasible to change the deployments of different SLITS variants on the fly, if properly migrated.

Incorporating temporal variations in schedulers can be beneficial. There are several attempts
for new scheduler designs at the Operating System level, since the emergence of multi-/many-core
architectures (e.g., Barrelfish [16], fos [79], Tessellation [24], etc.). Also, there are several recent
proposals on distributed scheduling for large-scale datacenter systems, which breed opportunities for
customization (e.g., Syrup [42], DBOS [70], etc.). These efforts also envision that more sophisticated
analysis can be applied for proper scheduler designs so that hardware resources can be well-utilized.
SLITS also contributes to this line of works by ➊ identifying and addressing the sparsity issue in
the Thread-Interaction Matrix via Factorization Machine - a novel machine learning technique; and
➋ maintaining the customizability for different scheduling objectives.

20SLITS is expected to have a constant chip area usage and power consumption, since the amount of threads for
the scheduler queue is usually fixed. If SMT is enabled, one simple way is to double the size of TIS-Cache and we
have showed that the overhead is still much lower (where TIS-Cache can be several GB, while doubling the TIS-Cache
only require it to be 32KB).
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8.3 Implications on Future Research and Practice

Scheduling plays a central role in resource managements. However, the roadmap to improve the
effectiveness from scheduling is limited in the current scope. They are mostly likely to remain as
huge obstacles for effective distributions of resources. By taking thread scheduling as a motivating
example, our work demonstrates a new methodology to address the ineffectiveness of resource man-
agement in modern computing stacks; and our work is expected to breed more research opportunities
in a broad context of resource scheduling (and managements).

8.3.1 Major Implications on Research

Our work breeds three major implications on research, which will likely have long-term impact on
both industry and academia:

1. Sparsity in Element-Interaction Matrix: our work formalizes the scheduling problems by
abstracting interactions between elements in a matrix manner. Such a formalization can be ex-
ploited for a variety of scenarios for resource managements. Our work also clears the roadmap on
how to mitigate the sparsity issue of Element-Interaction Matrix, and how to exploit the results:
by leveraging the (mostly)-inaccurate estimations of interactions among elements, it is expected
to be feasible to distribute the resources effectively. This is because the central focus of resource
managements lies on the order of preferred elements (regardless of which objectives to be satisfied),
rather than the exact quantity of the metrics for these objectives.

2. A New Solution Direction to Enable Effective Resource Distributions: our work
demonstrates the first customizable scheduler for resource distributions, to enhance the practicality
of scheduling. Our work also reveals the feasibility to reconfigure scheduling objectives on the fly:
this motivates the needs to rethink the formation of scheduling objectives, and how these objectives
can be properly emerged and/or quantified. By a successful demonstration of on-the-fly reconfigura-
tion for different scheduling objectives, it is feasible to incorporate time dimension within the design
(and implementation) of schedulers. Therefore, it is essential to examine whether it is needed for
active/reactive control/adjustments for newly-quantified metrics of different scheduling objectives

3. The Active/Reactive Dynamism between Quantification and Mechanism: our work is
the first to reveal the issue of the active/reactive dynamism between quantification and mechanism
by using scheduling as an example21. The ill-defined formalization of schedulers breed the chicken-
egg argument between the quantification of elements’ interactions; and the mechanism to distribute
resources for these elements. The dynamism, caused by interactions between the quantification
and mechanism, is expected to be an important research question for further exploration. To
better identify the issue, we leverage the quantification-mechanism argument and leave the four
elementary principles: the divergence of quantified metrics; the convergence of quantified metrics;
the reverberation of the mechanism under quantified metrics; and the execution after the interactions
from the quantified metrics and the mechanism. Interestingly, these four principles corresponds to
four principal types of neural circuits, to our current knowledge.

21Revised notes for the correctness at 2024/07/08.
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Revision

Revised at 2024/07/08

The authors find that the claim “the dynamism between quantification and mechanism" is not
sufficiently precise, therefore an extra revision is performed. [73] shall be considered as a prior
art for the dynamism between quantification and mechanism. Therefore, the original claim shall be
rectified for a better elaboration of the authors’ intention. In the context of hardware prefetching, we
consider it as a pre-defined active mechanism, and the purpose is for the performance improvements.
However, in our work, the importance lies on the differentiation between active actions and reactive
actions; and the emphasis hereby is that: the purposes are not fixed.
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