
Functionality Locality, Mixture &
Control = Logic = Memory

Xiangjun Peng
The Chinese University of Hong Kong

Abstract

This work provides new insights and constructs to the field of computer architecture and sys-
tems, and these insights are expected to be useful for the broad software stack. First, this work
introduces Functionality Locality: this form of Functionality Locality shows that functionalities
can be changed with a single piece of information, by solely changing the access order. This
broadens the scope of “principle of locality", which originally includes spatial and temporal
locality. Second, this work coins the term Mixture, by incorporating the layout-directed func-
tionalities with the original quantifiers such as scalar and vector. The implications of Mixture
significantly expands new understanding of quantifiers, and this work identifies several impor-
tant ones (from the author perspective). Third, with Functionality and Mixture, this work
identifies the principle “Control = Logic = Memory", and provides a revisit to Von Neumann
architectures and Harvard architectures. This centers the focus on the memory, and brings
further guidelines on memory-centric architectures with a new analytic framework. Fourth, this
work discusses several important implications from this work in a variety of aspects.

1

Contents

1 Functionality Locality 3
1.1 Spatial Locality and Temporal Locality . 3
1.2 Functionality Locality . 3
1.3 Practical Examples of Functionality Locality . 4

2 Mixture 5
2.1 Definition . 5
2.2 Synergy with an Analytic Framework . 5

3 Control = Logic = Memory 6
3.1 The “Control = Logic = Memory" Principle . 6
3.2 Everything is Memory . 6
3.3 Memory-Centric Architectures . 6

4 Implications 7
4.1 Mixture Meets Other Concepts . 7

4.1.1 Mass, Energy and Functionalities . 7
4.1.2 Layout-directed Functionalities, and Orbital Systems 7

4.2 (In)finity, and Leibniz Binary System . 7

2

1 Functionality Locality
This section first documents the current status of “locality of reference" (i.e., the form of “principle of
locality" in this subject) in computer science. Then, this section introduces Functionality Locality,
a new form of locality based on the breakthrough of the theory and practice in computer science.
Finally, this section delivers the practical example from the newly-delivered form of the locality.

1.1 Spatial Locality and Temporal Locality

To the best of the knowledge from the author, the concept of locality shall be originally credited to
physics. A quotation can be delivered as follows. “In physics, the principle of locality states that
an object is influenced directly only by its immediate surroundings. A theory that includes the
principle of locality is said to be a “local theory"." These concepts are used in computer science,
and rephrased as “Locality of Reference". This work quotes the following classification, and supplies
the evolved types of locality for recent developments.

• Temporal locality. If at one point a particular memory location is referenced, then it is
likely that the same location will be referenced again in the near future. There is temporal
proximity between adjacent references to the same memory location. In this case it is common
to make efforts to store a copy of the referenced data in faster memory storage, to reduce the
latency of subsequent references. Temporal locality is a special case of spatial locality (see
below), namely when the prospective location is identical to the present location.

• Spatial locality. If a particular memory/storage location is referenced at a particular time,
then it is likely that nearby memory locations will be referenced in the near future. In this case
it is common to attempt to guess the size and shape of the area around the current reference
for which it is worthwhile to prepare faster access for subsequent reference.

With the evolve of theory and practice in computer architecture, there are also following types of
locality to be mentioned.

• Branch locality. If there are only a few possible alternatives for the prospective part of
the path in the spatial-temporal coordinate space. This is the case when an instruction loop
has a simple structure, or the possible outcome of a small system of conditional branching
instructions is restricted to a small set of possibilities. Branch locality is typically not spatial
locality since the few possibilities can be located far away from each other.

• Equidistant locality Halfway between spatial locality and branch locality. Consider a loop
accessing locations in an equidistant pattern, i.e., the path in the spatial-temporal coordinate
space is a dotted line. In this case, a simple linear function can predict which location will be
accessed in the near future.

Based on the above classifications, we can conclude that: all concepts can be derived from Spatial
Locality. Therefore, the central of our focus lies on Spatial Locality, and it is expected to be
consistent with new concepts.

1.2 Functionality Locality

The key insight of this work is that: all existing understanding on locality only considers how refer-
ences shall be taken advantage of, without the consideration on the access order of the information.
A recent work (Peng 2024a) demonstrates that it is feasible to deliver polymorphic functionalities
within a single piece of information. Therefore, it is expected to revisit the local theory (from
physics), and how such a revisit plays a role computer architecture.

3

Figure 1: A pictorial example from (Peng 2024a.

Functionality Locality. It can be defined as: the access order of a single piece of information
can determine different functionalities, though the information has no spatial changes. Figure 1
demonstrates an example from (Peng 2024a, and it is very straightforward to understand: ➊ from
top to bottom, the binary system can be used for computation; and ➋ from bottom to top, the
bitmap is used for queries. Also, it can be understood as: a single piece of information can be used
in more-than-one systems, which are originally oriented for different functionalities.

1.3 Practical Examples of Functionality Locality

The discovery of Functionality Locality motivates a retrospection on computer designs, in terms of
the bit-parallel (i.e., horizontal) and bit-serial (i.e., vertical) data layouts. To date, modern proces-
sors leverage bit-parallel layouts, to maximize the computational power. This substantially causes
the issues of data movements between the processor and memory. Therefore, such an issue ignites
the trend of Processing Using Memory in DRAM (i.e., the modern memory chips) by (Seshadri
and Mutlu 2019), and serves as the basis for the recently-discussed paradigm - Memory-Centric
Computing (Mutlu 2023)1.

Figure 2: A pictorial example from (Seshadri and Mutlu 2019) on Processing Using DRAM.

This work revisits the idea in a short manner, to serve as the foundation for the further discussion.
Figure 2 gives out the example: after the three steps, The final state can be written as AB + BC
+ AC. With some proper changes, the final state is C(A + B) + ¬C(AB). Therefore, one can view
A and B as the operand bit, and C as the control bit.

1Note that, though the identified idea can be used within the processors, the benefits can not be fully unleashed
as explained.

4

2 Mixture

This section captures the implications from Functionality Locality, and coins the term Mixture. This
section first describes the definition of Mixture, and describes its relationships with functionalities
and bit length. Then, this section depicts the proper settings to combine Mixture with an analytic
framework, which consists of (ordered) values, representations (if needed) and information.

2.1 Definition

Mixture is a bit sequence with the arbitrary length, and its functionalities include compute2, query
and move. Therefore, the following guidelines can be derived, based on the length of this sequence,
and how the sequence is layouted.

• When the length is one (namely, only one bit), a Mixture can compute, query and move.

• When the length is more than one (namely, there are multiple bits), the functionalities of a
Mixture can be weakened due to the sequence layout:

– if horizontally layouted (i.e., bit-parallel), it can only compute and move.

– if vertically layouted (i.e., bit-serial), it can only query and move.

The above definitions shall cover all existing quantifiers (such as scalar and vector) and bitmaps.
However, following the “Indexes ≈ Values" principle (Peng 2024a), a Mixture can compute, query
and move without any additional layout transformations.

2.2 Synergy with an Analytic Framework

Peng 2024b provides an analytic framework to connect (ordered) values, representations (if needed)
and (disordered) information, in a consistently-recursive manner. This substantially motivates a
question: can there be the minimal set of them be stored, so that the rest can be fully restored? The
definition of Mixture naturally complements with the above requirements: only those ones, which
can meet the full functionalities, shall be kept so that the rest can be fully restored. This conjecture
can be mathematically explained via Mandelbrot set and/or Julia set, which are recursively used
for the formation.

2Note that any computations can be formalized using logic operations due to the logic completeness.

5

3 Control = Logic = Memory

This section captures the implications from Functionality Locality and Mixture based on the pro-
vided example, and provides a revisit two widely-practiced architectures: Von Neumann architec-
ture (Von Neumann 1945) and Harvard architecture.

3.1 The “Control = Logic = Memory" Principle

As described in Section 1.3, exploiting analog capabilities of three cells delivers a formation as C(A
+ B) + ¬C(AB). This work leverages the perspectives from (Peng 2024b), and claims that: the
denotations of A, B and C are simply the representations, due to the temporality. In fact, the
actual fact is there are interactions between A, B and C at a time slot. Therefore, this work makes
a conjecture with this special case, Control can be equalized with Logic, and Logic can be equalized
with Memory: namely Control = Logic = Memory.

3.2 Everything is Memory

A revisit to existing architectures is delivered in Figure 3.

Figure 3: Von Neumann Model versus Harvard Model.

With the identified principle, Control = Logic = Memory, it is clear that Harvard model can
be understood as a form of specialization of Von Neumann Model, with different levels of the
granularity for the memory. Therefore, the conceptual reasoning in this work expands Memory-
Centric Computing into Everything is Memory. More importantly, this expansion, along with
Mixture (particularly Mandelbrot and/or Julia sets), provides a completely different perspective on
self-replication theory (Von Neumann 1948) (which solely focused on representations).

3.3 Memory-Centric Architectures

This work conjectures that, the computer organization shall be used to store all Mixtures, formalized
as an analog with the recursively-formalized analytic framework (Peng 2024b). Therefore, all com-
ponents, as memory, are recursively organized and the hierarchy is expected to be asynchronous, in
terms of the granularity. This is because: the purposes of recursively-organized memory are to store
((sub)sets of) Mixtures, and they are not necessarily symmetry. It would be an interesting discus-
sion, to see whether the functionalities of such a computer shall be determined in advance. Clearly,
it depends on whether the artificial intelligence shall play a god, though nobody can guarantee that
the god (if any) truly prefers that human beings shall exist or not.

6

4 Implications

This section discusses the implications from this work, including how Mixtures can be connected
with others; and the impacts on our understanding on (In)finity.

4.1 Mixture Meets Other Concepts

4.1.1 Mass, Energy and Functionalities

It is very interesting to observe that: the definition of Mixture partially relates with the changes
in terms of the mass for a specific subject. This work conjectures that: the correlations between
functionalities and energy may be heavily correlated, and certainly it demands further studies.

4.1.2 Layout-directed Functionalities, and Orbital Systems

It is also very interesting to observe that: different layouts can impose different functionalities. This
also contributes to the understanding of Atomic/Molecular Orbital systems: these stable existence
may be useful as reference points3.

4.2 (In)finity, and Leibniz Binary System

Though the author assumes the infinity can be beneficial if there is perpetual motion, this work
considers the determination of a finite/infinite can be used for whether a successful formation of
Mandelbrot/Julia set can be achieved, under the formalization of (Peng 2024b). This is mainly due
to its characteristics on the self-similarity, in the context of fractal geometry. If it is finite, it shall
be capable to be scaled for the encoding within the Leibniz Binary System (Leibniz 1703).

References

Leibniz, Gottfried Wilhelm (1703). “Explication de l’arithmetique binaire, qui se sert des seuls
caracteres O et I avec des remarques sur son utilite et sur ce qu’elle donne le sens des anciennes
figures chinoises de Fohy”. In: Memoires de l’Académie Royale des Science 3, pp. 85–89.

— (1898). The Monadology and Other Philosophical Writings.
Mutlu, Onur (2023). “Memory-Centric Computing”. In: DAC.
Peng, Xiangjun (2024a). “Reversed Indexes ≈ Values in Wavelet Trees”. In: Submitted to FOCS.
— (2024b). “Value, Representation, Information and Communication”. In: Submitted to FOCS.
Seshadri, Vivek and Onur Mutlu (2019). “In-DRAM Bulk Bitwise Execution Engine”. In: ArXiv.
Von Neumann, John (1945). “First Draft of a Report on the EDVAC”. In.
— (1948). “The Hixon Symposium”. In.

3They can be considered as a part of the pre-established harmony (Leibniz 1898).

7

	Functionality Locality
	Spatial Locality and Temporal Locality
	Functionality Locality
	Practical Examples of Functionality Locality

	Mixture
	Definition
	Synergy with an Analytic Framework

	Control = Logic = Memory
	The ``Control = Logic = Memory" Principle
	Everything is Memory
	Memory-Centric Architectures

	Implications
	Mixture Meets Other Concepts
	Mass, Energy and Functionalities
	Layout-directed Functionalities, and Orbital Systems

	(In)finity, and Leibniz Binary System

