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Abstract

Feint behaviors refer to a set of nuanced deceptive behaviors, which enable players temporal
and spatial advantages over opponents in competitive games. Such behaviors are crucial tactics
in most competitive Multi-Player games (e.g., boxing, fencing, basketball, motor racing, etc.).
However, existing literature do not provide comprehensive or concrete formalization for Feint
behaviors, and their implications on game strategies. In this paper, we introduce the first
comprehensive formalization of Feint behaviors at action-level and strategy-level, and provide
concrete implementation and quantitative evaluation in Multi-Player games. The key idea of our
work is to (1) allow automatic generation of Feint behaviors via Palindrome-directed templates,
and combine them with intended high-reward actions in a Dual-Behavior Model; (2) address
Feint implications on game strategies in terms of the temporal, spatial and their collective
impacts; and (3) provide a unified implementation scheme of Feint behaviors in existing MARL
frameworks. The experimental results show that our design of Feint behaviors can (1) greatly
improve the game reward gains; (2) significantly improve the diversity of Multi-Player Games;
and (3) only incur negligible overheads in terms of time consumption.

∗Note that ‡refers the affiliation to The Chinese University of Hong Kong.
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1 Introduction

In most real-world Multi-Player Games (e.g., boxing, basketball, motor racing, etc.), players have
complex behaviors and complicated interactions. Simulating these games usually requires to model
the players’ behaviors into action spaces at action-level and explore strategies based on them [34,
35]. Among commonly seen behaviors in real-world games, Feint behaviors is a class of tactic
behaviors which are used to mislead opponents to gain future strategic advantages. Such behaviors
are generally nuanced in terms of movements (e.g., fake overhead punch in boxing, crossover in
basketball, early-braking and fake running wide in motor racing, etc.), but could gain huge strategic
advantages and increase the games’ diversity ([19, 26]). In game simulations, however, current
literature general lack a comprehensive or concrete modeling of Feint behaviors in both action-
level and strategy-level formalization. [34] mentioned Feint behaviors as a proof-of-concept to
construct animations for nuanced game strategies with enhanced unpredictability. More recently,
[35] provides a set of pre-defined Feint behaviors for model animation, to optimize game strategies
through training and generation via Reinforcement Learning. However, no work provides detailed
formalization to address the action-level characteristic of Feint and provide Feint behavior generation
guidelines. On the strategy-level, existing learning-based works either neglect Feint behaviors or
implicitly assume that they are the same as other behaviors which could have same impacts on
strategies through learning. We show that the existing learning-based approaches cannot effectively
model Feint behaviors in strategy-level, since Feint behaviors require intricate planning which is an
active process.

Our work provides the first comprehensive and concrete formalization of Feint behaviors in
action-level and strategy-level. We first present an automatic way to generate Feint behaviors using
Palindrome-directed Templates based on our observation on Feint characteristics, and provide
Dual-Behavior Model to showcase the design consideration for combing Feint behaviors and
follow-up actions. Based on the action-level formalization, we model the Feint behavior impacts
on strategy-level in terms of the temporal, spatial, and their collective impacts under a learnable
scheme. Then, we provide a concrete and unified implementation to incorporate the action-level and
strategy-level formalizations in common Multi-Player Reinforcement Learning (MARL) frameworks
to showcase the effectiveness of our formalization.

To provide a unified definition of Feint behavior in both continuous and discrete action space,
we highlight the difference between the terms action and behavior used in our formalization. We
use action as the minimal unit movement in a unit time step, such as a unit step movement along
the X and Y axis in a 2D board game, raising arms for a certain distance in a boxing game, turning
steering wheels while applying brakes for a certain degree in a racing game, etc. This definition of
action coincides with the commonly used definition of action in general MARL environments, which
is intuitive to understand, simulate, and build our formalization of Feint upon it. One may argue
that in some game simulations, combat movements like a cross punch are simply considered as one
action, but one could always divide those movements into several unified unit-time-step actions to
create a unified alignment in terms of time step in games. In terms of behavior, we refer to it as
a combination of several actions in a sequence (e.g., a cross punch in boxing games). Thus, Feint
could be naturally defined as a behavior that uses a sequence of actions to deceive opponents and
lead to large reward actions in the near future. We first describe our observation of Feint behaviors’
characteristics and introduce our formalization at the action level.

To properly examine the effectiveness of our formalization, we extensively construct a com-
plex and physics-based boxing game as abstraction of some animation-related works [34, 35]. We
use a two-player and a 6-player scenario with 4 commonly used MARL models (MADDPG [20],
MASAC [11, 13], MATD3 [2], and MAD3PG [4, 6]) to extensively evaluate our formalization. We
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also evaluate our formalization of Feint in a stratigic real-game, Alpha Star, to evaluate the game
diversity gain introduced by our formalization. The results show that our formalization of Feint
could significantly increase the gaming rewards in all scenarios with all 4 MARL models. For the
Diversity Gain, our method can increase the exploitation of the search space by 1.98X, measured
by the Exploitability metrics. Our implementation scheme only incur less than 5% overheads in
terms of per game episode time consumption. We conclude that our formalization of Feint behaviors
is effective and practical, significantly increasing players’ game rewards and making Multi-Player
Games more interesting.
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2 Background

2.1 Feint Behaviors in the Real-World and Simulated Games

Feint behaviors are common for human players, as a set of active actions to obtain strategic ad-
vantages in real-world games. Examples can include sports games such as boxing, basketball, and
motor racing [10, 9, 12], and electronic games such as King of Fighters and Starcraft [33, 5]. Feint
behaviors are not simple deceptive behaviors as their goal is to not to gain rewards for themselves
but to create temporal and spatial advantages for some short-term follow-up actions. In addition,
Feint behaviors have nuanced action formalizations. Though Feint is undoubtedly important in
many real-world games, there still lacks a comprehensive formalization of Feint in Multi-Player
Game simulations using Non-Player Characters (NPCs). There are only a limited amount of works
to tackle this issue. [34] is an early example of incorporating Feint as a proof-of-concept, which fo-
cuses on constructing animations for nuanced game strategies for more unpredictability from NPCs.
More recently, [36] uses a set of pre-defined Feint action sequences for the animation, which further
serves under an optimized version of control strategies based on Online Reinforcement Learning (i.e.
in animating combat scenes). However, these prior works (1) lack concrete formalizations of Feint
behavior characteristics, which cannot fully unveil the variety of Feint behaviors in action-level;
and (2) lack comprehensive explorations of Feint behaviors implications on game strategies, which
neglects the potential impacts of fusing effective Feint behaviors into strategies; and (3) solely focus
on Two-Player Games, which can not be effectively generalized to multi-player scenarios

2.2 Modeling Behaviors at Action-Level in Game Animation and Simulation

Modeling characters’ behaviors (series of actions) in games could be divided into two categories
based on the main purpose: animation-driven modeling or simulation-driven modeling, though an-
imation and simulation are inherently closely correlated. Animation-driven methods mainly focus
on modeling the behaviors themselves, with goals of producing a variety of nuanced and coherent
action sequences. The interactions with the environment (whether physics-based or not) are gen-
erally considered after the modeling of the behaviors and are generally simplified to showcase the
behaviors themselves. Patch-based generation is a direct way for such methods, which directly
compose behaviors by combining pre-defined action sequences [35]. This approach is widely adopted
in the industry due to its high production efficiency, supported by an extensive amount of animation
libraries (e.g. Mixamo [32]) [16, 30, 37]. However, in recent years, Learning-based generation
dominates the field as they could automatically produce animated behaviors to mimic the styles
of learned actions from the training inputs [17, 27]. On the other hand, simulation-driven model-
ing usually considers the full interactions with the environment in the first hand. These methods
generally formalize the behavior modeling process using Reinforcement Learning (RL) based frame-
works to fully explore the complicated space of physics-based action modeling [?]. In our work, we
use a animation-driven modeling with strong physical constraints to describe our observations of
Feint behavior characteristics and use the general simulation-driven modeling in MARL schemes for
learnable formalization of Feint in action and strategy levels.

2.3 MARL Models at Strategy-Level in Multi-Player Game Simulations

Multi-Agent Reinforcement Learning (MARL) aims to learn optimal policies for agents in a multi-
agent environment, which consists of various agent-agent and agent-environment interactions. Many
single-agent Reinforcement Learning methods (e.g. DDPG [18], SAC [11], PPO [29] and TD3 [8],
D4PG [4]) can not be directly used in multi-agent scenarios, since the rapidly-changing multi-agent
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environment can cause highly unstable learning results (evidenced by [20]). Thus, recent efforts
on MARL model designs aim to address such an issue. [7] proposes Counterfactual Multi-Agent
(COMA) policy gradients, which uses centralised critic to estimate the Q-function and decentralised
actors to optimize agents’ policies. [20] proposes Multi-Agent Deep Deterministic Policy Gradient
(MADDPG), which decreases the variance in policy gradient and instability of Q-function of DDPG
in multi-agent scenarios. [13] proposes Multi-Agent Actor-attention Critic (MAAC), which applies
attention entropy mechanism to enable effective and scalable policy learning. These models can
have varied impacts within a diverse set of scenarios. [6] introduces Multi-agent Distributed Deep
Deterministic Policy Gradient (MAD3PG), which extends the D4PG to multi-agent scenarios with
distributed critics to enable distributed tracking. [2] proposes Multi-Agent Twin Delayed Deep
Deterministic Policy Gradient (MATD3), which integrates twin delayed Q-learning and addressing
the overestimation bias in Q-values in a multi-agent setting. Though different MARL models have
different design details, they all share the same high-level learning structure. Thus, our goal is to
provide a unified scheme to fuse our formalization of Feint behaviors into game simulations that
could be learned using common MARL models, enabling effective Feint behaviors impacts regardless
of specific design choices of MARL models.
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3 Formalizing Feint behavior

We introduce our formalization of Feint behaviors in action level regarding (1) how to automati-
cally generate Feint behavior with templates from common offensive behaviors; and (2) how can
the generated Feint behaviors be synergistically combined with follow-up high-reward actions. We
first introduce our methodology to automatically generate Feint behaviors, by exploiting our newly-
revealed insight called Palindrome-directed Generation of Feint Templates. Next, we illus-
trate key design choices on how to combine the generated Feint behaviors with follow-up actions
in a Double-Behavior Model, which forms the foundation for the designs of Feint -accounted
strategy designs in Section 4. We choose boxing game as an example to concretely explain our
insights for Feint behaviors in this section but our formalization is a unified abstraction of common
games and could be easily adapted to other games including basketball, fencing, motor racing, etc.

3.1 Feint behavior characteristics and templates

Common behaviors in boxing games include hook, punch, and block, which generally require dif-
ferent time steps to accomplish. To provide a unified, aligned, and fine-grained formalization, we
divide these behaviors into unit actions in unit time steps (e.g., a punch behavior is composed of 13
full body actions of unit time steps in Figure 1). Thus, the action space is the physically-realistic
body movements of a humanoid character.

By definition, Feint behaviors aim to provide deceptive attacks, thus they are naturally expected
to be derived from a subset of existing offensive behaviors. Based on our exploration, we derive two
key findings from an extensive amount of offensive behaviors. First, most offensive behaviors can
be decomposed into three action sequences, which are Stretch-out Sequence (Sequence 1), Reward
Sequence (Sequence 2), and Retract Sequence (Sequence 3) (an example shown in the first row in
Figure 1). We elaborate on each action sequence in detail. Sequence 1 delineates all the actions, by
leading the agent movements to the Reward Sequence (in boxing, approaching the opponents before
actually punching them); Sequence 2 contains actions that gain game rewards (in boxing, physical
contact with the opponents); and Sequence 3 retracts an agent’s movements to a relative rest position
(in boxing, retracting back to a preparation position for next behaviors). Second, body movements
in Sequence 1 and Sequence 3 usually have semi-symmetric yet reverse-order action patterns in the
timeline. A behavior usually starts and ends in a similar physical state due to physical restrictions
(e.g., bones and muscles stretching restrictions for a humanoid).

Under the above three-stage decomposition of offensive behaviors, there are abundant possibil-
ities to composing Feint behaviors from the three action sequences. However, to ensure physically
realistic generation, we summarize two requirements that Feint behaviors must follow: (1) Feint
behaviors should follow semi-symmetrical patterns to effectively deceive opponents and return to a
rest position for follow-up moves. In boxing, a human player must retract the stretched-out limbs
to the relatively rest position, before stretching out to perform an actual attack action. This is be-
cause the retraction requires recharging the force to contracted muscles; and (2) transitions between
adjacent actions in different behaviors are expected to be smooth, as humanoid body movements
must provide continuous movements.

To satisfy the above two requirements, we propose a Feint behavior template generator called
Palindrome-directed Generation of Feint Templates, by extracting subsets of semi-symmetrical
actions from an offensive behavior and synthesizing them as a Feint behavior. The general method
to generate these templates are (1) by extracting subsets of unit actions from an attack behav-
ior, a Feint behavior can be considered as a semi-finished real attack behavior. This ensures the
high similarity of a generated Feint behavior with an attack behavior, thus opponents could be
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Figure 1: An example of Palindrome-directed Generation Templates of Feint behaviors.
The first row shows an action sequence of a cross-punch behavior. 3 examples of templates are
shown as ➊, ➋, and ➌ to demonstrate physically realistic generation of Feint behaviors.

deceived; and (2) by synthesizing semi-symmetric action sections, the overall movements can be
connected smoothly and the naturalness of humanoid actions can be guaranteed. Within our pro-
posed template generator Palindrome-directed Generation of Feint Templates, there are two
key adjustable parameters in practice: (1) sequence composition positions for Feint templates; and
(2) sequence length for Feint templates. We provide the rationales for these two key design choices.

(1) Sequence composition positions for Feint templates: Determining which position
to extract the subsets of action sequences needs to ensure that the extracted actions are semi-
symmetrical and allow physically realistic connections. To this end, we could have three templates
with different restrictions to exploit the composing patterns: (A) For template ➊, if there are similar
physical states, which refer to the positions of all joints and stretching angles are similar (as shown
in ➊ of Figure 1), actions before the first similar state and after the second similar state can be
extracted and directly synthesized as a Feint behavior (shown in ➊ of Figure 1); (B) For template
➋, by cutting once at any time point in Sequence 1, action sequences before the selected point and
the corresponding reversion can be synthesized as a Feint behavior (shown in ➋ of Figure 1); and
(C) For template ➌, similar to the second situation, by cutting once at any time point in sequence
3, action sequences after the selected point and the corresponding reversion can be synthesized as a
Feint behavior (as shown in ➌ of Figure 1). With these considerations, the Feint behavior generation
templates guarantee the naturalness of continuous movements via semi-symmetrical patterns.

(2) Sequence length for Feint templates: The choices for the length of extracted action
sequences in each template can vary greatly, since multiple actions in an offensive behavior can be
extracted based on different time ranges. The available choices could be any time length that results
in action sequences that satisfy the physical requirements discussed above (e.g. morphologically
reasonable Template ➋ or Template ➌ in Figure 1). Note that it’s also possible to construct nested
Feint behaviors, given a large number of feasible extraction positions. We formalize this choice as
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a learnable parameter that needs to combine Feint behaviors with their intended follow-up actions
(Section 3.2), and the learning adjustment is described in Section 5.

3.2 Feint behavior in consecutive game steps

Standalone Feint behaviors are meaningless in competitive games since the Feint behaviors them-
selves do not gain rewards for agents. Only by effectively combining Feint behaviors with intended
follow-up actions could showcase their effectiveness. Thus, we define an effective Feint cycle as a
Dual-Behavior Model, which jointly considers a Feint behavior and its intended follow-up behav-
ior (could be a single action or an action sequence). Our formalization for standalone Feint behaviors
(Section 3.1) already provides a large number of possible Feint behaviors. However, not all these
morphologically reasonable Feint actions can be directly combined with all high-reward follow-up
actions in combating scenarios. Therefore, certain constraints are demanded to construct effective
combinations of Feint behaviors and follow-up actions. Hereby, we introduce two major consider-
ations and then propose relevant restrictions, to enable naturalistic and suitable combinations of
Feint behaviors and follow-up actions.

Figure 2: Dual-action Model - high-level abstraction and demonstration of internal stage transitions

(1) Physical Constraints: Physical constraints need to be accounted for when synthesizing
Feint behaviors and follow-up actions. The ending physical state for a Feint behavior must be a
state that is physically possible for an agent to perform the follow-up high-reward actions. For
example, if a virtual character finishes Feint actions with the left foot forward, but the following
attack action starts with the right foot forwarded, the synthesis of these two actions is inappropriate
since this combination is physically unrealistic.

To ensure that the combinations of Feint behaviors and follow-up actions obey the physical con-
straints, we use a Reverse Search Principle which decides the intended follow-up actions (behavior)
first and then use the starting physical state of this behavior to search and compose proper Feint
behaviors (a more detailed description combined with strategy is described in Section 5). By first
selecting an intended follow-up high-reward behavior, the end physical state of the Feint behavior is
constrained to be close to the starting physical state of the follow-up behavior. Thus the composition
of possible Feint behaviors using the Palindrome-directed templates should aim to start and end at
a physical state that is close to the follow-up behavior. Figure 8 demonstrates a physically-realistic
combination of a Feint action and an attack action.
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(2) Effectiveness: The effectiveness of the incorporation of Feint behaviors is evaluated by
whether the following attack actions can successfully hit the opponent. A successful Feint behav-
ior would usually enable an agent to gain temporal and spatial advantages when performing the
follow-up behaviors. Thus, the two design parameters introduced in Section 3 play crucial roles
in combining Feint with follow-up behaviors. The abstraction of an ideal Dual-Behavior model
that could enable an agent with temporal and spatial advantage is illustrated in Figure 2 and a
corresponding example is provided in Figure 8. An effective Feint behavior creates temporal ad-
vantages that make the oppenoents to defend in a wrong direction and enable temporal advantages
to allow the follow-up high-reward behavior to successfully gain rewards on the opponents. We
also provide a detailed demonstration for successful and unsuccessful Feint cases in Figure ?? in
Appendix A. This is a strategy-level decision problem and all these parameters could be naturally
formalized in a Reinforcement Learning scheme, thus we leave the detailed discussion in Section 4
and implementation details in Section 5.
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4 Formalizing Feint behaviors in strategy

To effectively fuse the Feint beahviors using Dual-Behavior Model into game interaction, we pro-
vide the strategy-level formalization of Feint behaviors. We use Multi-Agent Reinforcement Learning
(MARL) schemes to discuss our formalization of Feint behaviors in the strategy level, as MARL pro-
vides flexibility in exposing multiple adjustable parameters in learnable policy models. As discussed
in generating Feint behaviors (Section 3.1) and composing them in the Dual-Behavior Models (Sec-
tion 3.2), the key considerations for effective Feint cycle is to enable temporal and spatial advantages
for an agent. Thus, our strategy-level formalization centers on how to address the temporal, spa-
tial, and their collective impacts of Feint behaviors with a Dual-Behavior Models. A more concrete
introduction for fusing of Feint into the MARL frameworks is presented in Section 5.

4.1 The Basic Formalization: Derivation and Limitations

We first summarize two major limitations of existing works to justify that they cannot deliver a
sufficient formalization of Feint in Multi-Player Games. Since there are no prior formalization, we
discuss relevant works and derive the key features to discuss them in detail.

➊ The basic formalization on temporal impacts is insufficient for Multi-Player Games. Multi-
Player Games require agents to account for future planning for decision-making, which is critical for
deceptive actions like Feint [22, 24, 26]. Several works simplify the temporal impacts of deceptive
game strategies in different gaming scenarios. [22] uses a discount factor γ to calculate the reward
for following actions as

∑∞
t=0 γ

tRi(st, a
i
t, a

−i
t ) for agent i. However, such a method suffers from the

"short-sight" issue [24], since the weights for future actions’ rewards shrink exponentially with time,
which are not suitable for all gaming situations (discussed in [26]). More recently, [14] applies a long-
term average reward, to equalize the rewards of all future actions as 1

T

∑T
t=0R

i(st, a
i
t, a

−i
t ) (i.e. for

agent i). However, such a method is restricted by the "far-sight" issue, since there are no differenti-
ation between near-future and far-future planning. The mismatch between abstraction granularity
heavily saddles with the design of Feint , because they use relatively static representations (e.g.
static γ and T ). Therefore, they cannot be aware of any potential changes of strategies in different
phases of a game. Hence, the temporal dimension is simplified for the basic Feint formalization.

➋ The basic formalizations of spatial impacts are generally in simplified 2-player scenarios only,
which cannot be effectively generalized to Multi-Player Game scenarios. Prior works, which attempt
to fuse Feint into complete game scenarios, only consider two-player scenarios [36, 31]. However,
in Multi-Player (more then two player) Games, gaming strategies (especially deceptive strategies)
yield spatial impacts on other agents. Such impacts have been overlooked by all prior works. This
is because an agent, who launches the Feint actions, can impact not only the target agent but
also other agents in the scenario. Therefore, the influences of such an action needs to account for
spatial impacts [19]. Moreover, with a new dimension accounted, the interactions between these
two dimensions also raise a potential issue for their mutual collective impacts.

4.2 Our formalization in a generalized game model

Therefore, to deliver an effective formalization of Feint in Multi-Player Games, it’s essential to
consider the temporal, spatial and their collective impacts comprehensively. We first discuss the
Temporal Dimension, then we elaborate our considerations on Spatial Dimension, and finally we
summarize the design for the collective impacts from both temporal and spatial dimensions.
Under commonly used MARL schemes, we define a K-agent Non-transitive Active Markov Game
Model as a tuple ⟨K,S,A, P,R,Θ, U⟩: K = {1, ..., k} is the set of k agents; S is the state space;
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A = {Ai}Ki=1 is the set of action space for each agent, where there are no dominant actions; P
performs state transitions of current state by agents’ actions: P : S ×A1 ×A2 × ...×AK → P (S),
where P (S) denotes the set of probability distribution over state space S; R = {Ri}Ki=1 is the set
of reward functions for each agent; Θ = {Θi}Ki=1 is the set of policy parameters for each agent; and
U = {Ui}Ki=1 is the set of policy update functions for each agent.

4.2.1 Temporal dimension: Influence time

To formalize the temporal impacts of Feint behaviors based on our Palindrome-directed Templates
and the Dual-Behavior Model, we use a Dynamic Short-Long-Term manner to emulate them, which
differ from the prior works’ formalization (Section 4.1). The short-term period refers to a complete
Dual-Behavior Model (Section 3.2), including a Feint behavior followed by an intended high-reward
behavior led by the Feint . The long-term periods are the time steps after this Feint cycle. The
rationale behind such a design choice is that: the purpose of Feint is to obtain strategic advantages
against the opponent in the temporal dimension, aiming to benefit the follow-up high-reward be-
havior. Hence, the Dynamic Short-Long-Term temporal impacts of Feint shall be (1) the actions
that follow Feint actions (e.g. actual attacks) in a short-term period of time should have a strong
correlation to Feint ; (2) the actions in the long-term periods explicitly or implicitly depend on the
effect of the Feint and its following actions; and (3) for different Dual-behavior models in differ-
ent gaming scenarios, the threshold that divides short-term and long-term should be dynamically
adjusted to enable sufficient flexibility in strategy making.

For Dynamic Short-Long-Term, we use the time-step length of a Dual-Behavior Model st as
the short-term planning threshold. For the short-term (the Dual-Behavior), which starts at time
step t0 with actions of a Feint behavior {ait0 , ..., a

i
t0+sf} and actions of a high-reward behavior

{ait0+sf+1, ..., a
i
t0+st} (sf denotes the Feint behavior length), we use a set of large weights α =

{αt0 , ..., αt0+st} are used to calculate the reward:

Rewshort−term(π
′
i, t0, st, α) = αt

t=t0+st∑
t=t0

Ri(st, a
i
t, a

−i
t ) (1)

since the purpose of Feint policy π′
i is to actively find effective combinations of Feint behaviors

and high-reward behaviors in Dual-Behavior Models that could benefit in a short-term period.
We then consider long-term planning after the short-term planning threshold st: we use a set of
discount factor β = {βt0+st+1, ..., βT } on the long-term average reward calculation (proposed by
[14]), to distinguish these reward from short-term rewards:

Rewlong−term(π
′
i, t0, st, T, β) = βt

1

T

T∑
t=t0+st+1

Ri(st, a
i
t, a

−i
t ) (2)

where T denotes the end time of the game.
Finally, we put them together to formalize the Short-Long-Term reward calculation mechanism,

when an agent i plans to perform a Feint action at time t0 with a short-term planning threshold st
and the end time of game T as:

Rewtemporal(π
′
i, t0, st, T, α, β) = λshortRewshort−term(t0, st, α) + λlongRewlong−term(t0, st, T, β) (3)

where λshort and λlong are weights for dynamically balancing the weight of short-term and long-
term rewards for different gaming scenarios. λshort and λlong are initially set as 0.67 and 0.33 and
are adjusted to achieve better performance with the iterations of training.
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4.2.2 Spatial dimension: Influence range

The spatial advantage of Feint behaviors refers to deceive the opponents (i.e., change the opponents’
actions from their original plans). In a Multi-Player Game (i.e. usually more than two players), the
strict one-to-one relationship between two agents is not realistic, since an agent can impact both the
target agent and other agents. Therefore, the influences on all other agents shall maintain different
levels [19]. Therefore, our work includes the spatial dimension of Feint impacts by fusing spatial
distributions. The key idea of this design is to combine spatial distribution with the influence range
during the game. More specifically, we incorporate Behavioral Diversity from [19], to mathematically
calculate and maximize the diversity gain of Feint actions in terms of the influence range.

We formalize the influence range of an action policy on K agent based on S × Ai × . . . × AK ,
which follows a distribution of multi-to-one relationships T → (α1T(i,1), α2T(i,2), . . . , αKT(i,K)). The
influence distribution can have different factors in different gaming scenarios. The spatial domain
influence could be naturally represented by the observation space of agents. We demonstrate a set of
commonly used observation parameters in boxing games [35] where agent i plays against opponent
−i: chosen action k of agent i Ak

i and opponent Aj
−i, the relative positions p(i,−i), relative moving

orientations o(i,−i), the linear velocities l_vel(i,−i), and angular velocities a_vel(i,−i). These ob-
servations could be composed in a vector V = (Ak

i , A
j
−i, p(i,−1), o(i,−i), l_vel(i,−i), a_vel(i,−i)).

When a Feint policy π′
i is added, we aim to maximize the effective influence range under the in-

fluence distribution of Feint . Assuming an agent i maintains a policy pool Pi = {π1
i , π

M
i }, such

influence distribution can be fused into Behavior Diversity measurement of the effective influence
range by maximizing the discrepancy between the old influence effectiveness of policy occupancy
measure ρπE (T ) and the influence effectiveness when adding Feint policy of new policy occupancy
ρπ′

i,πE−i
(V ′):

maxπ′
i
Rewspatial(π

′
i, V

′) = Df (ρπ′
i,πE−i

(V ′) || ρπE (V )) (4)

where the general f -divergence is used to measure the discrepancy of two distributions.

4.3 Collective impacts: Influence degree

Solely relying on Temporal Dimension and Spatial Dimension overlooks the interactions between
them, and these two dimensions are expected to have mutual influences for a realistic modeling [19].
Therefore, we consider the influence degree, so the collective impacts of these two dimensions can
be aggregated in a proper manner.

We formulate the collective impacts for a Feint policy π′
i in a Multi-Player Game that starts at

t0 and end at T as:

Rewcollective(π
′
i) = µ1

k∑
i=1

Rewtemporal(i, π
′
i, t0, st, T, α, β) + µ2

st∑
t=t0

max
π
′
i
Rewspatial(π

′
i, V

′, t) (5)

where temporal impacts Rewtemporal (Section 4.2.1) are aggregated on spatial domain and spatial
impacts Rewspatial (Section 4.2.2) are aggregated on temporal domain. µ1 and µ2 denote the
weights of aggregated temporal impacts and spatial impacts respectively, enabling flexible adaption
to different gaming scenarios. They are initially set as 0.5 and are adjusted to achieve better
performance with the iterations of training.

In addition to the collective impacts of Feint itself in terms of temporal domain and spatial
domain, our formalized impacts of Feint can also result in response diversity of opponents, since
different related opponents (spatial domain) at different time steps (temporal domain) can have
diverse response. Such diversity can be used as a reward factor that make the final reward calculation
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more comprehensive [25, 19]. Thus, to incorporate such diversity together with our final reward
calculation model, we refer to [19] to characterize the diversity gain incurred by our collective
impacts formalization. When the impact Rewcollective of Feint policy πM+1 in a M × N payoff
matrix APi×Pi at when opponents choose policy πj

−i is collectively calculated, the derived diversity
gain can be measured as follows:

Rewcollective−diversity(π
M+1
i ) = D(aM+1 || APi×Pi) (6)

aTM+1 := (Rewcollective(π
M+1
i , πj

−i))
N
j=1. (7)

where D(aM+1 || APi×Pi) represents the diversity gain of the Feint action on current policy space.
We follow the method in [19] for the quantification of diversity gain.
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5 Implementation

To provide a unified implementation scheme of Feint into most MARL frameworks, we choose
to implement on the training iteration level and avoid changing the MARL models themselves.
We create an additional policy model (e.g., MADDPG [20], MASAC [11, 13], MAD3PG [4, 6],
MATD3 [2], etc.) for each agent as the Feint policy, which works together with the regular policy
models for agents but is trained and inferenced differently.

Figure 3: Illustration of Feint behavior implementation in a game step

We implement the Feint behavior generation in an imaginary play module in training iterations
(i.e., each game step). The imaginary play module decides whether an agent should initiate a
Feint behavior, composes a Dual-behavior Model using Palindrom-directed templates, and utilizes
the Feint reward calculation to evaluate the quality of the generated action sequence in the Dual-
behavior model. The imaginary play will only be activated when no Dual-Action Model is in progress
and the current physical state sc of an agent is close to a physical state sr where it is physically
realistic for the agent to perform a high-reward action ai, while the possibility of performing ai is
relatively low according to its regular policy model (i.e., action ai are highly likely to be diminished
by other agents current actions). Thus, the purpose of Feint behavior is to lead the agent to a
state sr where the agent could maximize the game environment reward by performing the intended
high-reward action ai (i.e., other agents are deceived by Feint to perform other actions which cannot
effectively diminish the high-reward actions performed by the agent).

When the imaginary play is activated, a series of actions that compose the Feint behavior is
generated using the Palindrome-directed templates (Section 3.1), iteratively sampling actions from
the agent’s Feint policy model. Note that when the agent’s Feint policy model would only select
actions that are composed in offensive behaviors (set other actions possibilities to 0) in corresponding
templates and use a reflection frame to compose a (semi-)palindrome which leads to the agent’s
physical state sr. After composing the Feint behavior, a Dual-Behavior model is naturally created
by performing the Feint behavior and followed by the some high-reward actions. The short-term
reward can thus be calculated. After this Dual-Behavior action sequence, the imaginary play would
play a few steps to incorporate the long-term reward. The collective reward (Section 4.2.2) can
thus be calculated. This collective reward is then compared to an accumulated reward from an
imaginary play using only the agent’s regular policy model in the same number of time steps. If
the Feint collective reward is higher, the action sequence of the dual action model will be applied
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in the following real game steps. When a Dual-Action Model is in progress, the actions will not be
sampled from the regular policy models.

In the real game steps, where all the agents’ actions interact with the environment and the real
game rewards are calculated, our formalization of Feint only changes the way to update the Feint
policy models for agents. The Feint policy models are updated only when corresponding Dual-
Behavior Models finish and are updated using the accumulated real game rewards for that period.
The regular policy models are updated as usual settings (e.g., after some fixed steps - an episode).
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6 Experiments and Results

6.1 Experimental Methodology

Testbed Implementations. Our main testbed game environment is a multi-player boxing game,
which is based on an open-source environment Multi-Agent Particle Environment [23] but with
heavy additional implementation to create a physically realistic scenario.This game resembles intense
free fight scenarios in ancient Roman free fight scenarios [21], where interactions are intense and
Feint is expected to be effective. We incorporate common boxing behaviors (action sequences)
in boxing games. following the methodology in some animation and simulation works [34, 36].
This handcrafted scenario contains complex physics-based interaction systems and fine-grained time
steps to enable learning and generating Feint behaviors. A detailed description of the reward
gaining system, environment parameters, and agent settings is presented in Appendix B. We also
re-implement and extend a strategic real-world game, AlphaStar [3], which is widely used as the
experimental testbed in recent studies of Reinforcement Learning studies [28, 19]. We make extra
efforts to emulate a six-player game, where players are free to have convoluted interactions with
each other. And we implement Feint as dynamically generated policies, based on the 888 regular
gaming policies.

Experiment Procedure. We choose 4 commonly used MARL models: MADDPG [20],
MASAC [11, 13], MATD3 [2], and MAD3PG [4, 6] and incorporate them into testbed scenar-
ios. Our implementation is based on [1], which provides a unified MARL frameworks for the above
models. We aim to test whether Feint behaviors could be uniformly and effectively learned using all
these commonly used MARL models and how could Feint affect the game rewards for agents. Note
that our purpose is to verify the effectiveness of our formalization of Feint behaviors and not to
compare or modify the MARL models themselves. We create two test scenarios, the first one with
two players (one player per team) and the second one with six players (3 players per team). For all
of these scenarios, we first train the agents without Feint as baselines using the 4 models. Then for
the two-player scenario, we incorporate Feint on one player (shown as the Good player in Figure 4).
For the six-player scenario, we select 1 agent in the Good team (labeled as Good 3 in Figure 5),
to incorporate our formalization of Feint , and keep all other 3 agents regular. The reason for this
design in the six-player scenario is that we want to not only test how Feint behaviors can affect the
reward gain against direct opponents, but also see whether Feint could bring advantages for a player
among its teammates. All the players are rewarded independently and the notion of the "Good"
and "Adv" team does not mean that teammates have a shared reward (i.e., not explicit constraints
that force them to cooperate). Note that all players have identical capabilities and are rewarded
using the same mechanisms, thus Feint could be incorporated on any player. Our labeling choice
here is to provide to a consistent way to track and analysis the game rewards. All experiments for
the two-player scenario are trained for 75000 game iterations and all experiments for the two-player
scenario are trained for 150000 game iterations.

Evaluation Metrics. We examine the effects of Feint using ➊ gaming rewards of training, ➋

diversity gain of policy space and ➌ overhead of computation load. We first examine the gaming
outcomes when using the MADDPG, MASAC, MATD3, and MAD3PG MARL models, by com-
paring the per episode gaming rewards of agents across all scenarios. Note that these rewards are
the actual game rewards (the reward that returned by the gaming environment), which are not
the rewards that policy models used to select actions or update parameters. We then examine the
effects of Feint actions on how Feint can improve the diversity of gaming policies (Section 4.3).
Finally, we perform overhead analysis, incurred by fusing Feint formalization in strategy learning.
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6.2 Experimental Results

6.2.1 Gaming Reward Gain

Figure 4 shows the game reward comparisons of using Feint behaviors or not in the Two-Player
scenario (Section 6.1) for 4 MARL models. The first row shows the baseline results where all agents
are trained normally, while the second row shows the results where the player labeled with "Good"
incorporates Feint behaviors. In most of the baseline results (e.g., using MADDPG, MAD3PG, and
MATD3), the two players’ rewards tend to progress to a similar level when after enough training
iterations. For MASAC, the "Good" player seems to gain higher rewards than its opponents when
the training iterations are large, but the advantage is not stable and such a phenomenon could
likely be the instability of the MASAC algorithm itself . For all the results where Feint behaviors
are incorporated, we could see a significant advantage gain for the "Good" player. Thus, our
formalization of incorporating Feint behaviors could effectively improve the actual game rewards in
two-player combating scenarios.

Figure 4: Comparison of Game Reward when using Feint and not using Feint in a 1 VS 1 scenario.

To further evaluate the effectiveness of our formalization of Feint behaviors in multi-player
scenarios, Figure 5 shows the game reward comparisons in Six-Player scenario (Section 6.1) for 4
MARL models. The first row shows the baseline results while the second row shows the results
where the player labeled with "Good 3" incorporates Feint behaviors. In all baseline results, all 6
players seem to achieve similar levels of rewards after enough training iterations. In comparison, in
all results where the "Good 3" player incorporates Feint , it gains significantly more rewards than
the opponents as well as its teammates. This result shows that our formalization of Feint could not
only gain higher rewards towards the direct opponents, but also gain advantages among teammates
who do not incorporate Feint . Another interesting observation is that there are no more symmetric
patterns in the players’ rewards, showing that the gaming interactions in multi-player scenarios have
enough complexity (Note that the scenario is not designed to be a zero-sum game).

6.2.2 Diversity Gain

To examine the impacts on the policy diversity in games, we perform a comparative study between
MARL training with and without Feint . Specifically, We use Exploitability and Population Efficacy
(PE) to measure the diversity gain in the policy space. Exploitability [15] measures the distance of
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Figure 5: Comparison of Game Reward when using Feint and not using Feint in a 3 VS 3 scenario.

a joint policy chosen by the multiple agents to the Nash equilibrium, indicating the gains of players
compared to their best response. The mathematical expression of Exploitability is expressed as:

Expl(π) =
N∑
i=1

(maxπ′
i
Rewi(π

′
i, π−i)−Rewi(π

′
i, π−i)) (8)

where πi stands for the policy of agent i and π−i stands for the joint policy of other agents. Rewi

denotes our formalized Reward Calculation Model (Section 4.3). Thus, small Exploitability values
show that the joint policy is close to Nash Equilibrium, showing higher diversity. In addition, we
also use Population Efficacy (PE) [19] to measure the diversity of the whole policy space. PE is a
generalized opponent-free concept of Exploitability by looking for the optimal aggregation in the
worst cases, which is expressed as:

PE({πk
i }Nk=1) = minπ−imax1⊤α=1 ai>=0

N∑
k=1

αkRewi(π
k
i , π−i) (9)

where πi stands for the policy of agent i and π−i stands for the joint policy of other agents. α denotes
an optimal aggregation where agents owning the population optimizes towards. Rewi denotes our
formalized Reward Calculation Model (Section 4.3) and opponents can search over the entire policy
space. PE gives a more generalized measurement of diversity gain from the whole policy space.

Figure 6 shows the experimental results for evaluating diversity gains. From the figure, we
obtain two observations. First, agents that can dynamically perform Feint actions (Agent 1, 2, and
3) achieve lower Exploitability (around 4.9×10−2) compared to agents who perform regular actions
(around 9.7 × 10−2) and have higher PE (lower negative PE - around 5.3 × 10−2) than those who
only perform regular actions (around 1.2× 10−2). This result shows that our formalized Feint can
effectively increase the diversity and effectiveness of policy space. Second, agents with Feint have
slightly higher variations in both metrics. This is because Feint naturally incurs more randomness
(e.g. succeed or not) in games, resulting in higher variations in metrics.

6.2.3 Overhead Analysis

Figure 7 shows the results of our overhead analysis. We make two observations. First, fusing Feint
in MARL training do incur some overhead increment in terms of running time. This is because

19



Figure 6: Diversity gain for agents, in terms of the exploitablity and the negative population efficacy.

the formalization and fusion of Feint in MARL incur additional calculation load. Secondly, in
both MADDPG models and MAAC models, the increased overhead is generally lower than 5%,
which still indicates that our proposed formalization of Feint actions can have enough feasibility
and scalability on fusing with MARL models. Note that even we use two policy models for each
agent in our implementation, our designs restrict that only one model is inferenced in each game
step (Section 5), thus the overhead is low.

1
V

S
1

3
V

S
3

Figure 7: Overhead of Feint the 1 VS 1 and 3 VS 3 scenarios using 4 MARL models.
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7 Conclusion

In this work, we introduce the first comprehensive formalization, implementation and quantitative
evaluations of Feint in Multi-Player Games. We provide automatic generation of Feint behaviors
using Palindrom-directed Templates and synergistically combine Feint with follow-up actions in
Dual-Bahavior Model. The decision choices on the action-level are fused into strategy-level formal-
izations in game interactions. We provide a concrete implementation scheme to incorporate Feint
into common MARL frameworks. The results show that our design of Feint can (1) greatly improve
the reward gains from the game; (2) significantly improve the diversity of Multi-Player Games;
and (3) only incur negligible overheads in terms of the time consumption. We conclude that our
formalization of Feint is effective and practical, to make Multi-Player Games more interesting. Our
formalization is also expected to be applicable for future models of Multi-Player Games due to its
uniformed design.

21



References

[1] J. Ackermann, C. Badger, and T. Jiang, “Johannesack/tf2multiagentrl,” November 2020.
[Online]. Available: https://github.com/JohannesAck/tf2multiagentrl

[2] J. Ackermann, V. Gabler, T. Osa, and M. Sugiyama, “Reducing overestimation bias in multi-
agent domains using double centralized critics,” arXiv preprint arXiv:1910.01465, 2019.

[3] K. Arulkumaran, A. Cully, and J. Togelius, “Alphastar: an evolutionary computation
perspective,” in Proceedings of the Genetic and Evolutionary Computation Conference
Companion, GECCO 2019, Prague, Czech Republic, July 13-17, 2019, M. López-
Ibáñez, A. Auger, and T. Stützle, Eds. ACM, 2019, pp. 314–315. [Online]. Available:
https://doi.org/10.1145/3319619.3321894

[4] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. TB, A. Muldal,
N. Heess, and T. P. Lillicrap, “Distributed distributional deterministic policy gradients,” in 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. [Online].
Available: https://openreview.net/forum?id=SyZipzbCb

[5] L. Critch and D. Churchill, “Sneak-attacks in starcraft using influence maps with heuristic
search,” in 2021 IEEE Conference on Games (CoG), Copenhagen, Denmark, August 17-20,
2021. IEEE, 2021, pp. 1–8. [Online]. Available: https://doi.org/10.1109/CoG52621.2021.
9619156

[6] D. Fan, H. Shen, and L. Dong, “Multi-agent distributed deep deterministic policy gradient for
partially observable tracking,” in Actuators, vol. 10, no. 10. MDPI, 2021, p. 268.

[7] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual
multi-agent policy gradients,” in Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, S. A. McIlraith
and K. Q. Weinberger, Eds. AAAI Press, 2018, pp. 2974–2982. [Online]. Available:
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17193

[8] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation error in
actor-critic methods,” in Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, ser.
Proceedings of Machine Learning Research, J. G. Dy and A. Krause, Eds., vol. 80. PMLR,
2018, pp. 1582–1591. [Online]. Available: http://proceedings.mlr.press/v80/fujimoto18a.html

[9] I. Güldenpenning, M. A. A. Alaboud, W. Kunde, and M. Weigelt, “The impact of global
and local context information on the processing of deceptive actions in game sports,” German
Journal of Exercise and Sport Research, vol. 48, no. 3, pp. 366–375, 2018.

[10] I. Güldenpenning, W. Kunde, and M. Weigelt, “How to trick your opponent: A review article
on deceptive actions in interactive sports,” Frontiers in psychology, vol. 8, p. 917, 2017.

[11] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor,” in Proceedings of the 35th

22

https://github.com/JohannesAck/tf2multiagentrl
https://doi.org/10.1145/3319619.3321894
https://openreview.net/forum?id=SyZipzbCb
https://doi.org/10.1109/CoG52621.2021.9619156
https://doi.org/10.1109/CoG52621.2021.9619156
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17193
http://proceedings.mlr.press/v80/fujimoto18a.html


International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, ser. Proceedings of Machine Learning Research, J. G.
Dy and A. Krause, Eds., vol. 80. PMLR, 2018, pp. 1856–1865. [Online]. Available:
http://proceedings.mlr.press/v80/haarnoja18b.html

[12] R. Hyman, “The psychology of deception,” Annual review of psychology, vol. 40, no. 1, pp.
133–154, 1989.

[13] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement learning,” in
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, ser. Proceedings of Machine Learning Research,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 2019, pp. 2961–2970. [Online].
Available: http://proceedings.mlr.press/v97/iqbal19a.html

[14] D. Kim, M. Riemer, M. Liu, J. N. Foerster, M. Everett, C. Sun, G. Tesauro, and J. P.
How, “Influencing long-term behavior in multiagent reinforcement learning,” CoRR, vol.
abs/2203.03535, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2203.03535

[15] M. Lanctot, V. F. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Pérolat, D. Silver,
and T. Graepel, “A unified game-theoretic approach to multiagent reinforcement learning,”
in Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, Eds., 2017, pp. 4190–4203. [Online]. Available: https:
//proceedings.neurips.cc/paper/2017/hash/3323fe11e9595c09af38fe67567a9394-Abstract.html

[16] J. Lee and K. H. Lee, “Precomputing avatar behavior from human motion data,”
Graph. Model., vol. 68, no. 2, pp. 158–174, 2006. [Online]. Available: https:
//doi.org/10.1016/j.gmod.2005.03.004

[17] S. Lee, S. Lee, Y. Lee, and J. Lee, “Learning a family of motor skills from a single
motion clip,” ACM Trans. Graph., vol. 40, no. 4, pp. 93:1–93:13, 2021. [Online]. Available:
https://doi.org/10.1145/3450626.3459774

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” in 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available:
http://arxiv.org/abs/1509.02971

[19] X. Liu, H. Jia, Y. Wen, Y. Yang, Y. Hu, Y. Chen, C. Fan, and Z. Hu, “Unifying behavioral and
response diversity for open-ended learning in zero-sum games,” CoRR, vol. abs/2106.04958,
2021. [Online]. Available: https://arxiv.org/abs/2106.04958

[20] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-agent
actor-critic for mixed cooperative-competitive environments,” in Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg,
S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds.,
2017, pp. 6379–6390. [Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/
68a9750337a418a86fe06c1991a1d64c-Abstract.html

23

http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v97/iqbal19a.html
https://doi.org/10.48550/arXiv.2203.03535
https://proceedings.neurips.cc/paper/2017/hash/3323fe11e9595c09af38fe67567a9394-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3323fe11e9595c09af38fe67567a9394-Abstract.html
https://doi.org/10.1016/j.gmod.2005.03.004
https://doi.org/10.1016/j.gmod.2005.03.004
https://doi.org/10.1145/3450626.3459774
http://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2106.04958
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html


[21] D. Matz, Ancient Roman Sports, AZ: Athletes, Venues, Events and Terms. McFarland, 2019.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.
Riedmiller, “Playing atari with deep reinforcement learning,” CoRR, vol. abs/1312.5602, 2013.
[Online]. Available: http://arxiv.org/abs/1312.5602

[23] I. Mordatch and P. Abbeel, “Emergence of grounded compositional language in multi-agent
populations,” arXiv preprint arXiv:1703.04908, 2017.

[24] A. Naik, R. Shariff, N. Yasui, and R. S. Sutton, “Discounted reinforcement learning
is not an optimization problem,” CoRR, vol. abs/1910.02140, 2019. [Online]. Available:
http://arxiv.org/abs/1910.02140

[25] N. P. Nieves, Y. Yang, O. Slumbers, D. H. Mguni, Y. Wen, and J. Wang, “Modelling
behavioural diversity for learning in open-ended games,” in Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, ser. Proceedings
of Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139. PMLR, 2021, pp.
8514–8524. [Online]. Available: http://proceedings.mlr.press/v139/perez-nieves21a.html

[26] C. Nota and P. S. Thomas, “Is the policy gradient a gradient?” in Proceedings
of the 19th International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’20, Auckland, New Zealand, May 9-13, 2020, A. E. F. Seghrouchni,
G. Sukthankar, B. An, and N. Yorke-Smith, Eds. International Foundation for
Autonomous Agents and Multiagent Systems, 2020, pp. 939–947. [Online]. Available:
https://dl.acm.org/doi/abs/10.5555/3398761.3398871

[27] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa, “AMP: adversarial motion
priors for stylized physics-based character control,” ACM Trans. Graph., vol. 40, no. 4, pp.
144:1–144:20, 2021. [Online]. Available: https://doi.org/10.1145/3450626.3459670

[28] S. Risi and M. Preuss, “Behind deepmind’s alphastar ai that reached grandmaster level in
starcraft ii,” KI-Künstliche Intelligenz, vol. 34, no. 1, pp. 85–86, 2020.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” CoRR, vol. abs/1707.06347, 2017. [Online]. Available:
http://arxiv.org/abs/1707.06347

[30] H. P. H. Shum, T. Komura, and S. Yamazaki, “Simulating interactions of avatars in high
dimensional state space,” in Proceedings of the 2008 Symposium on Interactive 3D Graphics,
SI3D 2008, February 15-17, 2008, Redwood City, CA, USA, E. Haines and M. McGuire, Eds.
ACM, 2008, pp. 131–138. [Online]. Available: https://doi.org/10.1145/1342250.1342271

[31] O. So, K. Stachowicz, and E. A. Theodorou, “Multimodal maximum entropy dynamic games,”
CoRR, vol. abs/2201.12925, 2022. [Online]. Available: https://arxiv.org/abs/2201.12925

[32] Stefano Corazza and Nazim Kareemi, “Mixamo,” 2022. [Online]. Available: https:
//www.mixamo.com/#/

[33] T. Team, “Toalha nerd-king of fighter xv: Trailer de ryo sakazaki e robert garcia!” 2021.

[34] K. Wampler, E. Andersen, E. Herbst, Y. Lee, and Z. Popovic, “Character animation in
two-player adversarial games,” ACM Trans. Graph., vol. 29, no. 3, pp. 26:1–26:13, 2010.
[Online]. Available: https://doi.org/10.1145/1805964.1805970

24

http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1910.02140
http://proceedings.mlr.press/v139/perez-nieves21a.html
https://dl.acm.org/doi/abs/10.5555/3398761.3398871
https://doi.org/10.1145/3450626.3459670
http://arxiv.org/abs/1707.06347
https://doi.org/10.1145/1342250.1342271
https://arxiv.org/abs/2201.12925
https://www.mixamo.com/#/
https://www.mixamo.com/#/
https://doi.org/10.1145/1805964.1805970


[35] J. Won, D. Gopinath, and J. K. Hodgins, “Control strategies for physically simulated
characters performing two-player competitive sports,” ACM Trans. Graph., vol. 40, no. 4, pp.
146:1–146:11, 2021. [Online]. Available: https://doi.org/10.1145/3450626.3459761

[36] ——, “Control strategies for physically simulated characters performing two-player competitive
sports,” ACM Trans. Graph., vol. 40, no. 4, pp. 146:1–146:11, 2021. [Online]. Available:
https://doi.org/10.1145/3450626.3459761

[37] B. Yersin, J. Maïm, J. Pettré, and D. Thalmann, “Crowd patches: populating large-scale
virtual environments for real-time applications,” in Proceedings of the 2009 Symposium on
Interactive 3D Graphics, SI3D 2009, February 27 - March 1, 2009, Boston, Massachusetts,
USA, E. Haines, M. McGuire, D. G. Aliaga, M. M. Oliveira, and S. N. Spencer, Eds. ACM,
2009, pp. 207–214. [Online]. Available: https://doi.org/10.1145/1507149.1507184

25

https://doi.org/10.1145/3450626.3459761
https://doi.org/10.1145/3450626.3459761
https://doi.org/10.1145/1507149.1507184


A Demonstration of Feint Behaviors

A.1 Demonstration of Feint Behaviors in Dual-Beahvior Models

To explain the generation of physically realistic Feint behavior in a Dual-Behavior Model in detail,
we use humanoid models: when selecting the corresponding actions (i.e. from Feint behaviors and
then an attack behavior), the starting position (jointly connected body) of the second action should
be the same as the ending position of the starting action. With such a principle, the joints of a
character’s body can perform natural movements during the transition between these two behaviors.
Figure 8 demonstrates a physically realistic combination of a Feint behavior and a follow-up attack
behavior. When checking the end of NPC A’s Feint behavior and the beginning of the Agent’s (left
white agent) real attack, both the upper and lower body parts of NPC A perform the same postures
(the left arm raised and the right arm charged, performing a punch for the upper body, and the left
foot forward for lower body).

Figure 8 provides a detailed example of a successful Feint behavior in a Dual-Behavior Model.
We refer to the Agent as the white player on the left and its Opponent as the black player on
the right, and describe the Feint behavior from the Agent perspective. The agent first performs a
Feint behavior which is fake punch towards its opponent’s head, which leads the opponent to defend
towards its head. However, the agent connects such Feint behavior with a follow-up hook towards
the opponent’s waist. Due to the temporal advantage gained by the quick Feint behavior and the
spatial advantage gained by deceiving the opponents to defend to wrong directions, the opponent
would be knocked down by the follow-up behavior of the agent. Thus, a successful Feint behavior
is performed in this Dual-Behavior Model.

Figure 8: Dual-action Model - snapshots of the full process

A.2 Demonstration of Successful and Unsuccessful Feint Behaviors

To enable a successful Feint behavior in a Dual-Behavior Model, the temporal and spatial advantages
should be properly formalized. The advantages of combining Feint behaviors with follow-up high-
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reward actions stem from an appropriate time difference, incurred by Feint behaviors to mislead
the opponents’ actions. If the length of a Feint behavior is too short, the following attack actions
might not gain much advantage compared to actions combinations without Feint behaviors; and if
the length of a Feint action is too long, the process to perform a Feint behaviors can leave sufficient
time for the opponent to react and even attack back. We provide examples for these scenarios in
Figure ??. We refer to the left white player as NPC A and describe the Feint from its perspective,
and the right black agent NPC B is considered as its opponent.

We use the timeline of the Dual-Behavior Model in Figure 2 to analyze and evaluate the three
Feint behaviors. We use three key time points that are highlighted in Figure 9, Figure 10, and
Figure!11 to explain the action sequences, in which tB1 indicates the end of defense behavior while
tA2 indicates the estimated start of reward in the second action sequence for NPC A and tB2 indicates
the estimated start of reward in second action for NPC B. The three consequences mainly differ in
these three key time points.

1) Very short Feint behaviors tA2 < tB1: The action sequence of simulation is shown in
Figure 9, in which the Feint behaviorsduration is extremely short and the estimated start of reward
in second action for NPC A (tA2) happens when NPC B is still in the first defense action (thus
tA2 < tB1). As the sequence shows, the second real action of NPC A would not benefit much since
NPC B is still in defense.

Figure 9: Demonstration of unsuccessful Feint behavior when its too short

2) Proper length Feint behaviors tB1 < tA2 < tB2: The action sequence of simulation is
shown in Figure 10, in which the Feint behaviors have a moderate duration. The key difference of
this duration is that the estimated start of reward in the second behavior for NPC A happens after
the end of the defense behavior of NPC B and before the estimated start of reward in the second
behavior for NPC B, thus showing the temporal advantages introduced in Section 3.2. With such
temporal advantages, NPC A gains preemptive advantage over NPC B, inflicting rewards from NPC
B (at time tA2 in Figure ??) before NPC B’s reward inflicting of second behavior starting (at time
tB2 in Figure 3). When NPC A hits NPC B at tA2, the ongoing action of NPC B will be interrupted
and NPC B would be knocked down.

3) Very long Feint behaviors tA2 > tB2: The action sequence of simulation is shown in
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Figure 10: Demonstration of successful Feint behavior with proper length

Figure 11, in which the Feint actions duration is too long and the estimated start of reward in
second behavior for NPC A (tA2) happens after the estimated start of damage in second action for
NPC B (tB2). This condition has the opposite consequence of a moderate length Feint behaviors,
in which NPC B can inflict rewards on NPC A before NPC A’s reward inflicting of the second
behavior starts. When NPC B hits NPC A at tA2, the ongoing action of NPC A will be interrupted
and NPC A would be knocked down.

Figure 11: Demonstration of unsuccessful Feint behavior when its too long

Thus, the choice of the time duration for Feint actions highly depends on the action combinations
and the estimation of opponents’ actions, proving our observation in Section 3. Thus the learning
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to formalize such a choice in the strategy learning scheme (Section 4) is important to construct
effective Feint behaviors with corresponding Dual-Behavior Models.
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B Details of Boxing Game Scenario

Our testbed game scenario is emulates a complex boxing game by modeling all the detailed combat
behaviors except building the graphical rendering process. The reason we neglect the rendering
process is that our main goal is to evaluate the effectiveness of formalization of Feint behaviors in
multi-player games, and the building a real-time graphical rendering with such complex humanoid
interactions would be a graphics paper itself. We fully emulate all the behavior details in our game
simulation, thus our constructed game simulation is detailed enough to evaluate our formalization
of Feint behaviors. We provide a detailed description of the game scenario here.

We follow a similar boxing game scenario construction approach as [34, 35], and model the full
set of Mixamo [32] 22 behaviors (action sequences) which contain over 250 available full body actions
(illustrated in Figure 12). We extensively construct a gaming environment based on Multi-Agent
Particle System [23] to incorporate these behaviors, which then could be seamlessly integrated with
common MARL models.

Figure 12: The full set of 22 behavior (action sequences) of a boxing game from Mixamo.
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The players could move around in a 2D plane. We use a vector to model the physical state of
players, which stores and tracks the body movements of a player. This vector tracks the positions of
body parts: left and right limbs, the left and right legs, and the center body, which is used to select
available combat behaviors (the transitions of body movements must be smooth as mentioned in
Section 3.1 and Section 3.2). With this setting, Feint behaviors could be naturally generated and
incorporated into suitable Dual-Behavior Models. We follow the exact Mixamo dataset to model the
length of the behaviors (the length of action sequences) and rewards the behaviors (e.g., a successful
long punch would gain more rewards than a short punch.) Specifically, we measure the number of
frames contained in all behaviors and normalize them to define unit time steps for action space and
thus get the action sequence lengths for all behaviors. An example of game rewards and action
sequence length of 5 behaviors are provided in Figure 13.

Figure 13: Demonstration of the game rewards and action sequence lengths of 5 Mixamo behaviors.
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