Rethinking Instruciton Set Architecture and Compiler for Bit-serial
SIMD Processing Using Memory in DRAM

Xiangjun Peng! Yaohua Wang! Ming-Chang Yang!

Abstract

This paper summarizes and retrospects the issues of Bit-serial SIMD PUD architectures, and ad-
dresses them by rethinking the ISA and compiler design for them. @ This work first suggests the
simplification of ISA for Bit-serial SIMD PUD architectures, by directly exposing in-DRAM ana-
log computation code as the only instruction extension. In this way, the fine-grained in-DRAM
analog computation codes can (1) benefit from memory-level parallelism more effectively; and
(2) naturally form code obfuscation for both computation and control-flow handling. @ This
work then delivers a new compilation abstraction called “Pseudo Control Paths", by exploiting
a newly-identified property from in-DRAM analog computation (i.e. the polymorphic function-
alities from a single instruction). In this way, the compilation abstractions can (1) benefit from
the enlarged optimization space for code compaction (with concrete optimizations); and (2)
enhances control-flow obfuscation for the generated binaries. An implementation is delivered
to show that: the above ideas can be fully automated and integrated with the state-of-the-art
proposals of Bit-serial SIMD PUD architectures, without affecting the programmablity. The
evaluation suggests the potential of the above ideas, which can enhance the practicality of Bit-
serial SIMD PUD architectures.

This work delivers a generic design to tighten the integration between the processor and memory
(with the analog computation capability), which breeds a variety of implications on the microar-
chitecture, Instruction Set Architecture, and compiler designs. First, this work demonstrates
the feasibility to make the ISA of the host processor RISCer - namely breaks assumption that
the Turing Completeness is NOT necessarily realized at the ISA level only (incidentally, the
impossibility of obfuscation). Second, this work delivers a compile-time abstraction for increas-
ing the redundancy from the actual control dependency, and this translates control dependency
into data dependency. Third, this work delivers a few optimizations to take advantage of the
compile-time redundancy, to translate the compile-time redundancy into the runtime benefits.
Such designs are demonstrated beneficial within our context, and it is expected to be beneficial
to SIMD, MIMD and beyond.

*Note that T refers the affiliation to The Chinese University of Hong Kong, and * refers the affiliation to National
University of Defense Technology.

	Introduction
	Background
	DRAM Organization and Operations
	Processing-Using-DRAM Architectures
	Bit-Serial SIMD Processing-Using-DRAM

	Motivation
	Challenge 1: Assembly Programming Interfaces for Poor Programmability
	Challenge 2: Extra Intra-subarray Data Movements for Low Efficiency
	Challenge 3: (Potential) Data Spilling for Huge Overheads

	CHOPPER Design for the Better Programmability
	The CHOPPER Programming Interface & Compiler
	The VIRtual COde Emitter: A New Compilation Abstraction for Bit-serial SIMD PUD Compilers
	Opportunities for Optimizing CHOPPER

	Optimizing CHOPPER for Better Efficiency
	Optimization 1: Bit-sliced Code Scheduling to Aggregate Dependent Operations
	Optimization 2: Bit-sliced Instruction Selection to Maximize Data Reuses
	Optimization 3: Renaming Bit-Sliced Instructions to Eliminate Redundant Data Buffering
	Putting Them Together

	Experimental Methodology
	Experimental Infrastructure
	Workload Specifications
	Benchmark Configurations

	Experimental Results
	CHOPPER versus Hands-Tuned Codes
	Breakdown Analysis of CHOPPER
	Impacts of DRAM Subarray Size
	Impacts of Subarray-Level Parallelism

	Related Works
	Conclusions, Limitations and Implications
	Conclusions from this work
	Limitations of CHOPPER
	Implications: Extendability and Applicability
	Extendability of CHOPPER to other PIM architectures
	Potential Synergy between CHOPPER with Dataflow Graph Scheduling

	Implications on Future Research and Practice
	Major Implications on Research
	Long-Term Impacts on Industry

