
This is a summary of the original paper, entitled “CHOPPER: A Compiler Infrastructure for Programmable Bit-serial SIMD
Processing Using Memory in DRAM” which appears in HPCA 2023 [9]

Towards Programmable and Efficient In-Memory Accelerators∗
Xiangjun Pengδ Yaohua Wang$ Ming-Chang Yangδ

δ The Chinese University of Hong Kong $National University of Defense Technology

ABSTRACT
The programmability and efficiency of In-Memory Accelera-
tors (or Processing-In-Memory) are still major obstacles for
adoption, though there are diverse forms of In-Memory Accel-
erators (including Processing-Using-Memory and Processing-
Near-Memory). By focusing on Bit-serial SIMD Processing
Using DRAM (PUD), our HPCA-29 paper outlines and aims
to address (1) the programmability issue, by enabling au-
tomatic transformation from naturally-expressive codes to
“SIMD-Within-A-Register"-style codes; and (2) the efficiency
issue, by resolving the granularity mismatch between pro-
cessing and storing data operands; and the under-utilization
of Memory-Level Parallelism, caused by such a mismatch.

Our HPCA-29 paper introduces CHOPPER, the first com-
piler infrastructure to make Bit-serial SIMD PUD architec-
tures more progammable and efficient. For the programma-
bility, CHOPPER delivers the first dataflow programming
interface on PIM architectures, by automating bit-slicing com-
pilation to generate “SIMD-Within-A-Register"-style codes.
For the efficiency, CHOPPER introduces new optimizations
to minimize data movements on Bit-serial SIMD PUD. Along
with the above designs, CHOPPER also reveals the potential
to exploit Memory-Level Parallelism in PIM architectures.
Our HPCA 2023 paper also covers how CHOPPER design
can be potentially beneficial for other types of Processing-
Using-Memory, as well as Processing-Near-Memory accel-
erators. Our evaluations suggest that CHOPPER can sig-
nificantly improve the performance with a huge reduction
of Lines-of-Codes, compared with codes using the state-of-
the-art hands-tuned methodology on three state-of-the-art
Bit-serial SIMD PUD architectures.

1. SUMMARY
1.1 Problem: Programmability & Efficiency

on Bit-serial SIMD PUD
Processing-In-Memory (PIM), as recently-bloomed practices
on commercial DRAM chips [1, 5, 7], receives a consider-
able amount of attention due to its potentials to mitigate data
movement bottlenecks. However, Processing-Near-DRAM
(PND) architectures fail to exploit the maximum level of in-
ternal DRAM bandwidth. A new approach is to leverage
in-DRAM analog computation for bitwise (or complex) oper-
ations [3, 4, 10, 11]. Such architectures, denoted as Bit-serial
SIMD Processing-Using-DRAM (PUD) architectures, (1)
take each DRAM bank as an ultra-wide SIMD processing
unit (i.e. 65,536); (2) transpose individual data operands
vertically in each SIMD lane (i.e. DRAM bitline in Bit-serial
SIMD PUD architectures) [4]; and (3) support basic logic
(and complex) logic operations in a SIMD manner.

∗The full paper is: "CHOPPER: A Compiler Infrastructure for
Programmable Bit-serial SIMD Processing Using Memory in
DRAM" [9], X. Peng and et al, HPCA 2023, 24 March 2023. The
full paper can be downloaded from https://ieeexplore.ieee.
org/document/10071070.

Different from PND architectures, (Bit-serial SIMD) PUD
architectures are more difficult to be programmable and effi-
cient. Our HPCA 2023 paper details three outstanding chal-
lenges on existing Bit-serial SIMD PUD architectures from
the perspectives of programmability and efficiency. These
challenges include: (1) assembly programming interfaces
for the poor programmability; (2) extra intra-subarray data
movements for the low efficiency, when data can fit within
DRAM subarrays; and (3) (potential) data spilling for huge
overheads (or even slowdowns).
➊ The first challenge is Assembly Programming Interfaces
for Poor Programmability. Existing Bit-serial SIMD PUD
architectures (e.g. [4, 10, 11]) only support assembly-like in-
terfaces for programmers to use, by directly exposing their
instructions as intrinsic functions. The state-of-the-art pro-
gramming interface in SIMDRAM [4]) is in assembly; and
SIMDRAM [4] synthesizes data preparation and computation
on Bit-serial SIMD PUD architectures in multi-bits. This en-
forces programmers to (1) handle memory allocation explic-
itly; (2) rewrite all codes in the “SIMD-Within-A-Register"
style; and (3) consider how to exploit parallelism of different
DRAM components.
➋ The second challenge is Extra Intra-subarray Data Move-
ments for Low Efficiency. Existing Bit-serial SIMD PUD
architectures can not minimize intra-subarray data move-
ments [3, 10, 11]: this refers to data movements between a
pre-assigned region for analog computation and the rest. In
the state-of-the-art programming abstractions [4], there is a
granularity mismatch between full-size storing (e.g. word-
size, or byte-size) and bitwise (i.e., 1-bit) processing on these
architectures. Therefore, this prevents the minimization of
intra-subarray data movements, as well as redundant buffer-
ing for (parts of) data operands.
➌ The third challenge is (Potential) Data Spilling for Huge
Overheads. No existing work (e.g. [4, 10, 11]) considers
such an issue, and assume all workloads only require a con-
stant amount of DRAM rows to buffer either input data or
intermediate data; also, existing work also assumes all data
can always fit within a DRAM subarray. Such an issue can
be particularly serious on Bit-serial SIMD PUD architec-
tures, because (A) Bit-serial SIMD PUD architectures have
a ultra-wide SIMD width, and the vectorization for it ampli-
fies the issue; and (B) inter-bitline communications, namely
DRAM bitlines, are forbidden since the storage functionality
of DRAM needs to be preserved. Hence, it is rationale to
consider the limit of a DRAM subarray can be hit.

The goal of our HPCA-29 paper is to address the above
issues on Bit-seiral SIMD PUD architectures. To achieve this,
our paper describes a new compiler infrastructure, CHOP-
PER, to make Bit-serial SIMD PUD architectures more pro-
grammable and efficient. CHOPPER ➊ provides a syn-
chronous dataflow programming interface; ➋ automatically
transforms synchronous dataflow codes into heavily-optimized
codes; and ➌ proposes a new set of optimizations.

1

https://ieeexplore.ieee.org/document/10071070
https://ieeexplore.ieee.org/document/10071070

1.2 Solution: CHOPPER Compiler
Our CHOPPER compiler has following three key features.

1. Synchronous Dataflow Programming. The CHOP-
PER programming interface is a synchronous dataflow pro-
gramming interface, which (1) automates explicit memory
allocation via the whole-program analysis; and (2) gener-
ates "SIMD-Within-A-Register"-style codes, as demanded in
Bit-serial SIMD PUD architectures.

2. A Compilation Abstraction for Exploiting Memory-
Level Parallelism. CHOPPER compiler introduce a new
compilation abstraction called “VIRtual COde Emitter", to
improve the exploitation of Bank-Level Parallelism on Bit-
serial SIMD PUD architectures.

3. New Optimizations to Minimize Data Movements.
CHOPPER propose new Optimizations for Bit-Sliced codes
(OBS), and implement them in the CHOPPER compiler to
improve the efficiency, for less data movements on Bit-serial
SIMD PUD architectures.
1.2.1 Programming Interface and Compiler

An overview of CHOPPER is explained in detail in our
HPCA-29 paper [9]. Here, we briefly describe them.

Programming Interface. The CHOPPER programming
interface inherits from the Usuba Programming Language [8],
with extra engineering efforts for Bit-serial SIMD PUD ar-
chitectures. Figure 1a and 1b gives a comparison.

Compiler. The CHOPPER compiler consists of the front-
end and the back-end. The front-end of the CHOPPER com-
piler translates naturally-expressive codes into C/C++ codes
for a single subarray of Bit-serial SIMD PUD architectures.
This automates explicit memory allocation and generates bit-
sliced codes. The back-end of the CHOPPER compiler trans-
lates bit-sliced codes in C/C++ into assembly instructions for
Bit-serial SIMD PUD architectures. An iterative use of the
back-end broadcasts C/C++ codes to different subarrays.
1.2.2 VIRtual COde Emitter (VIRCOE)

CHOPPER provides a new middleware called VIRCOE, to
exploit the Bank/Subarray-Level Parallelism. This is because
code permutation affects the exploitation significantly. The
key idea is to aggressively overlap data transfer (i.e. the ac-
tivation before READ/WRITE) with computation (i.e. the
Triple-Row Activation) on Bit-serial SIMD PUD architec-
tures. Note that CHOPPER also supports VIRCOE to be
reconfigured for subarray-level parallelism [6].
1.2.3 Optimizations for Bit-Sliced codes (OBS)

CHOPPER incorporates three new optimizations. ➊ The first

optimization reorders and aggregates bit-sliced operations
based on the data dependency, to minimize the number of
rows for buffering intermediate operands. ➋ The second
optimization aggressively supports bit-level data reuse rather
than operand-level. ➌ The third optimization builds upon the
first two: for any “one-shot" bitslices following the “Store-
Copy-Compute" pattern, eliminates “copy" instructions can
be eliminated by directing data to the B-group.
1.2.4 Applicability to Other PIM

The design philosophy of CHOPPER is expected to be useful
for other PIM architectures, because (1) CHOPPER inherits a
generalization from bit-slicing to operand-slicing, which can
be suitable for other PUM architectures; (2) operand-slicing
can improve the throughput of PND architectures.
1.2.5 Experimental Results

We evaluate CHOPPER by hosting it on three state-of-the-art
Bit-serial SIMD PUD architectures. We compare CHOPPER-
generated codes against the state-of-the-art hands-tuned codes.
Figure 2 summarizes the results: averaged across 16 real-
world workloads, CHOPPER achieves considerable perfor-
mance gains on Ambit [10], ELP2IM [11] and SIMDRAM [4],
compared with hands-tuned codes using the state-of-the-art
methodology [4] for Bit-serial SIMD PUD architectures.
These performance benefits also accompany wit a great re-
duction of Lines-of-Codes (LoC) in CHOPPER (i.e. by 4.3X
less LoCs for one subarray, and >103X less for all subarrays
in a rank). (See Table III in the paper).

We provide additional insights into source benefits of dif-
ferent optimizations in CHOPPER via a breakdown analy-
sis, analyze tradeoffs when reconfiguring different sizes of
a DRAM subarray, evaluate the impacts of subarray-level
parallelism on Bit-serial SIMD PUD architectures. Our re-
sults shows that CHOPPER is very effective with different
configurations of DRAM chips.

2. NOVELTY AND SIGNIFICANCE
Recent industrial practices already attempt PND for their
products. However, the roadmap to improve the programma-
bility and the efficiency of these architectures (and PUD
architectures) is still unclear. They are mostly likely to re-
main as huge obstacles for the wide adoption of PIM. By
taking Bit-serial SIMD PUD architectures as a motivating
example, Our HPCA-29 paper introduces a new compiler
infrastructure for the better programmability and efficiency.
2.1 Contributions on Future Research

(a) SIMDRAM Programming Interface [4]. (b) CHOPPER Programming Interface.

Figure 1: A comparative example of written codes in (A) SIMDRAM Programming Interface [4]; and (B) CHOPPER
Programming Interface to perform packed addition and subtraction in a subarray of Bit-serial SIMD PUD architectures.

2

Figure 2: Speedup of all workloads over Intel multi-core for CHOPPER and the hands-tuned codes.

Our paper makes three major contributions which will likely
have long-term impact on both industry and academia:
1. In-Memory Accelerators Can Be Programmable: our
paper introduces the first example to support a (synchronous)
dataflow programming interface on PIM architectures. Such
an idea can be exploited for other PIM architectures with
small migration. Our paper also clears the roadmap on how to
make PIM architectures benefit from high-level programming:
by leveraging another level of the indirection, it is expected to
be feasible to incorporate PIM architectures in an accelerator
manner. This is because the switches between the processor
and the PIM accelerator can be easily achieved, and such a
design philosophy can ignite more sophisticated designs, to
provide portable compilers for PIM-integrated systems.
2. A New Solution Direction to Improve the Efficiency
of In-Memory Accelerators: our paper demonstrates the
first software-level automation, to enhance the exploitation
of memory-level parallelism (MLP) on PIM architectures.
Our paper also reveals the importance of code permutations
for MLP exploitation, and experimentally demonstrates the
potential benefits. Moreover, our paper demonstrates the
applicability (and benefits) to adopt such an exploitation onto
more aggressive MLP. This can motivate future work on
architectural (and compilation) designs for this goal.
3. Granularity Mismatch between In-Memory Accelera-
tors and Memory Chips: our paper is the first to identify
the issue of granularity mismatch between processing and
storing operands on PIM architectures. Our paper clears the
performance issues from the granularity mismatch, which
includes (A) data movements within PIM architectures; and
(B) data spilling on PIM architectures. With the emergence of
PIM architectures in practice, these two issues can motivate
ad-hoc solutions (e.g., tight integration between PIM logic
and memory chips) or unified solutions (e.g., new hardware-
software co-designs to address these issues) as future work.
2.2 Long-Term Impacts on Industry
The importance of both the problem (programmabilty and
efficiency) and the solutions presented in this work will in-
crease in future systems. The importance of “high-level pro-
gramming on PIM architectures" is likely to increase, as the
emerging trends of PIM architectures in practice. The im-
portance of “exploitation of MLP on PIM" and “bit-slicing
on PIM architectures" would also increase, as the growing
amount of industrial practices on improving the efficiency
of In-Memory Accelerators. Moreover, the importance of
“resolving the granularity mismatch" will increase, as the
limited area budget for In-Memory Accelerators.

As a result, co-designs throughout architectural designs
and software abstractions will likely be considered as one

of suitable alternatives, to some throughput-demanded tech-
niques under area-insufficient scenarios (e.g., DRAM chips)
in future PIM-integrated systems: the need of bit-slicing au-
tomation on Bit-serial SIMD PUD architectures architectures
(and other PND architectures) is such an example. To en-
hance the generality of PIM architectures in diverse set of
workloads, the desired techniques are expected to involve
supports of high-level programming on PIM architectures.
3. CONCLUSIONS
This paper proof-of-concepts that both programmability and
efficiency of PIM architectures can be improved simultane-
ously, by rethinking the software stack for PIM-integrated
systems. The compiler infrastructure proposed in this paper
can be used/extended to benefit other PIM architectures, as
well as new optimizations proposed in this work (for MLP
exploitation and the minimization of data movements). More-
over, the design philosophy of our paper can yield future
work on portable compilers for different PIM architectures.

Our HPCA paper presents a new set of problems and prac-
tical ideas for improving the programmability and efficiency
of PIM architectures. Though there are a diverse set of PIM
architectures, the authors assume that (Bit-serial) Process-
ing Using DRAM shall be considered as the central role in
Memory-Centric Computing. With the most recent break-
through on (Bit-serial) Processing Using DRAM [2] (i.e.,
demonstrates the feasibility to simultaneously activate up to
32 DRAM rows in existing commercial DRAM chips), the
future is bright.
4. REFERENCES
[1] F. Devaux. The True Processing In Memory Accelerator. In IEEE Hot

Chips, 2019.
[2] Y. I. Emir and et al. PULSAR: Simultaneous Many-Row Activation

for Reliable and High-Performance Computing in Off-the-Shelf
DRAM Chips. 2024.

[3] F. Gao and et al. ComputeDRAM: In-Memory Compute Using
Off-the-Shelf DRAMs. In MICRO, 2019.

[4] N. Hajinazar and et al. SIMDRAM: A Framework for Bit-serial SIMD
Processing Using DRAM. In ASPLOS, 2021.

[5] M. He and et al. Newton: A DRAM-maker’s Accelerator-in-Memory
(AiM) Architecture for Machine Learning. In MICRO, 2020.

[6] Y. Kim and et al. A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM. In ISCA, 2012.

[7] S. Lee and et al. Hardware Architecture and Software Stack for PIM
Based on Commercial DRAM Technology : Industrial Product. In
ISCA, 2021.

[8] D. Mercadier and et al. Usuba: High-Throughput and Constant-Time
Ciphers, by Construction. In PLDI, 2019.

[9] X. Peng and et al. CHOPPER: A Compiler Infrastructure for
Programmable Bit-serial SIMD Processing Using Memory in DRAM.
In HPCA, 2023.

[10] V. Seshadri and et al. Ambit: In-Memory Accelerator for Bulk Bitwise
Operations Using Commodity DRAM Technology. In MICRO, 2017.

[11] X. Xin and et al. ELP2IM: Efficient and Low Power Bitwise Operation
Processing in DRAM. In HPCA, 2020.

3

	Summary
	Problem: Programmability & Efficiency on Bit-serial SIMD PUD
	Solution: CHOPPER Compiler
	Programming Interface and Compiler
	VIRtual COde Emitter (VIRCOE)
	Optimizations for Bit-Sliced codes (OBS)
	Applicability to Other PIM
	Experimental Results

	Novelty and Significance
	Contributions on Future Research
	Long-Term Impacts on Industry

	Conclusions
	References

