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Abstract

Increasing interests in Bit-serial SIMD Processing-Using-DRAM (PUD) architectures amplify
the needs for a compiler to automate code generation, credited to their ultra-wide SIMD width
and reduction of data movements. The state-of-the-art Bit-serial SIMD PUD architectures
(1) only provide assembly SIMD programming interfaces, which heavily saddles with program-
mers to exploit the ultra-wide SIMD width on these architectures; and (2) encapsulate one-bit
operations into multi-bit abstractions, which incurs a granularity mismatch and restricts the
optimization space to minimize data movements.

We present CHOPPER, a new compiler infrastructure to make Bit-serial SIMD PUD more
programmable and efficient. For the better programmability, the design of CHOPPER (1) ex-
ploits bit-slicing compilers to enable automatic memory allocation and code generation, from
naturally-expressive codes (i.e., similar to Parallel Haskell) into the “SIMD-Within-A-Register"-
style codes; and (2) introduces a new abstraction called “Virtual Code Emitter", to make Bit-
serial SIMD PUD architecture exploit Memory-Level Parallelism (i.e., Bank or Subarray) more
effectively. For the better efficiency, we propose three novel optimizations for CHOPPER to bet-
ter exploit the potential of Bit-serial SIMD PUD architectures, which (1) minimize the amount
of intra-subarray data movements; and (2) mitigate the overheads of spilling data outside Bit-
serial SIMD PUD architectures. These optimizations can greatly improve the overall efficiency
of Bit-serial SIMD PUD architectures.

We evaluate CHOPPER by hosting it on three state-of-the-art Bit-serial SIMD PUD architec-
tures. We compare CHOPPER-generated codes against the state-of-the-art hands-tuned codes
for Bit-serial SIMD PUD architectures. We highlight that, averaged across 16 real-world work-
loads from 4 PUD-friendly application domains, CHOPPER achieves (A) 1.20X, 1.29X and
1.26X speedup when data can fit within DRAM subarrays; and (B) 12.61X, 9.05X and 9.81X
speedup when data need to spill to the secondary storage, on Ambit [49], ELP2IM [55] and
SIMDRAM [22], compared with hands-tuned codes using the state-of-the-art methodology [22]
for Bit-serial SIMD PUD architectures. These performance benefits also accompany with a
great reduction of Lines-of-Codes (LoC) in CHOPPER (i.e., by 4.3X less LoCs for hands-tuning
a single subarray, and >103X less for hands-tuning all subarrays in a rank). We also perform
breakdown and sensitivity studies of CHOPPER, to better understand its source benefits and
examine its robustness under various architectural features.

The design and implementation of CHOPPER breed a few implications on the limitations and
advantages on the broad scope of Processing-In-Memory (PIM) paradigm. We first address
the limitations of the current CHOPPER. Then we identify the potential of CHOPPER for
other types of Processing-In-Memory architectures. Finally, we discuss the implications from
CHOPPER on processor-memory integration, with the emerging presence of PIM paradigm.

∗Note that † refers the affiliation to The Chinese University of Hong Kong, and ‡ refers the affiliation to National
University of Defense Technology.
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1 Introduction
Near-DRAM Processing, as recently-bloomed practices of Processing-In-Memory (PIM), receives a
considerable amount of attention due to its potential to mitigate data movement bottlenecks [12,33].
However, recent practices fail to exploit the maximum level of the internal DRAM bandwidth. This
substantially motivates recent efforts on in-DRAM analog computation for bulk bitwise operations
(and the synthesized complex operations) [20, 22, 49, 55], which are denoted as Bit-serial SIMD
Processing-Using-DRAM (PUD) architectures. These architectures (1) take each DRAM bank as
an ultra-wide SIMD processing unit (i.e., 65,536); (2) transpose individual data operands vertically
in each SIMD lane (i.e., DRAM bitline in Bit-serial SIMD PUD architectures) [22]; and (3) synthesize
basic logic operations (e.g., AND/OR/NOT) to support complex arithmetic computations. While
Bit-serial SIMD PUD architectures deliver a cost-effective direction to enable massively parallel
computation within DRAM chips, both the programmability and efficiency remain as huge obstacles.
We give an overview of these issues below (detailed in Section 3).
➊ The programmability of existing Bit-serial SIMD PUD architectures is restricted by its assembly-
like programming interfaces: all prior work [22,49,55] deliver hands-tuned codes for these architec-
tures, which incur significant overheads for the adaption of these architectures. Such issues become
further severe due to the fact that: (A) explicit memory allocation on Bit-serial SIMD PUD archi-
tectures can be highly exhausting, if the size of data in a subarray needs to increment; (B) Bit-serial
SIMD PUD architectures require codes to be implemented in the “SIMD-Within-A-Register" style,
which are notoriously infamous due to its implementation difficulties and costs [15–17]; and (C) opti-
mizations to exploit the parallelism of hierarchical DRAM components (e.g Bank-Level Parallelism)
on Bit-serial SIMD PUD architectures are hard to manage, since all assembly-like instructions target
a single subarray in the existing programming interface.
➋ The efficiency of existing Bit-serial SIMD PUD architectures is limited: all prior work fails to
minimize the amount of data movements on Bit-serial SIMD PUD architectures. We specifically
describe two major issues in this part, by taking the most recent effort SIMDRAM [22] as an
example: (A) SIMDRAM [22] stores the full-size data operands inside the subarray, whereas the
operations of PUD architectures are executed at a fixed granularity (i.e.„ one-bit). Though SIM-
DRAM [22] applies a complex algorithm to map operands with DRAM rows, such a mismatch still
incurs extra intra-subarray data movements; and (B) SIMDRAM [22], as well as other Bit-serial
SIMD PUD proposals [49,55], overlooks the potential issues of spilling data outside Bit-serial SIMD
PUD architectures, which can incur significant performance overheads (or even slowdowns) of these
architectures. To exploit the ultra-wide SIMD width, code vectorization requires redundant data
copies to avoid frequent communications across different SIMD lane (i.e.„ DRAM bitlines in Bit-
serial SIMD PUD architectures). All current proposals assumes Input Streaming1, which is rationale
in some applications. But it can not be generalized to a broad range of real-world applications.

We introduce CHOPPER, a new compiler infrastructure to make Bit-serial SIMD PUD ar-
chitectures more programmable and efficient. Compared with the state-of-the-art hands-tuned
methodology for Bit-serial SIMD PUD architectures (i.e., SIMDRAM approach [22]), CHOPPER
➊ provides a synchronous dataflow programming interface for the better expressiveness; ➋ automat-
ically transforms synchronous dataflow codes into heavily-optimized codes for Bit-serial SIMD PUD
architectures; and ➌ incorporates new optimizations, to (A) minimize data movements caused by
data granularity mismatch; and (B) mitigate potential overheads from data spilling from Bit-serial
SIMD PUD architectures.

1The term “Input Streaming" is first coined by Neural Cache [13], a design of Bit-serial SIMD Processing-Using-
Memory in Cache/SRAM for accelerating Deep Neural Network Inference. Input Streaming means that all input
data is overwritten by the intermediate data on a fixed-size region of a subarray.
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CHOPPER improves the programmability from the following three aspects. ➊ CHOPPER de-
livers a synchronous dataflow programming interface, which automates explicit memory allocation
via the whole-program analysis; ➋ CHOPPER inherits bit-slicing compilers [36, 37], to generate
"SIMD-Within-A-Register"-style codes, as demanded in Bit-serial SIMD PUD architectures (de-
noted as Bit-Sliced Coded throughout the rest of this paper); and ➌ CHOPPER introduces a
new abstraction called "VIRtual COde Emitter", to enable CHOPPER-generated codes to exploit
Memory-Level Parallelism (Bank or Subarray) more effectively. (Section 4)

CHOPPER improves the overall efficiency via Optimizations for Bit-Sliced codes (OBS), to
minimize extra data movements. OBS consists of ➊ a bit-sliced code scheduling mechanism by
synthesizing multiple operations comprehensively, to improve the utilization of the limited subarray
space; ➋ a bit-sliced instruction selection scheme, which exploits bit patterns (e.g., bit-level sparsity)
on Bit-serial SIMD PUD architectures to improve data reuses of intra-subarray constant values; and
➌ a bit-sliced instruction renaming approach to eliminate extra intra-subarray data movements, to
reduce both the space consumption and instruction sequence (for the better performance). Our
newly-proposed OBS broadens the scope of the state-of-the-art Bit-serial SIMD PUD architectures,
and can be fully automated in CHOPPER. (Section 5)

We quantitatively examine the benefits of CHOPPER, by hosting it on three Bit-serial SIMD
PUD architectures (including Ambit [49], ELP2IM [55] and SIMDRAM [22]), and compare CHOPPER-
generated codes against hands-tuned codes on these architectures under the state-of-the-art hands-
tuned methodology (i.e., the SIMDRAM approach [22]). We also provide comparisons with state-
of-the-art implementations on an Intel Skylake multi-core CPU and a NVIDIA TITAN V GPU.
Our evaluations use 16 workloads from 4 PUD-friendly application domains, including: DenseNet
from Deep Neural Networks, Wavelet Tree Construction from Compressed Suffix Arrays, DiffGen
from Differential Privacy, and a widely-used approach from Significance Weighting (Section 6).

Results Overview. Compared with the state-of-the-art hands-tuned optimizations on Am-
bit [49], ELP2IM [55] and SIMDRAM [22], CHOPPER-generated codes improve the average per-
formance of all selected workloads by (A) 1.20X, 1.29X and 1.26X speedup when data can fit within
DRAM subarrays; and (B) 12.61X, 9.05X and 9.81X speedup when data needs to spill to the sec-
ondary storage. The benefits of CHOPPER are credited to the reduction of intra-subarray data
movements and (potential) data spilling. These performance benefits also accompany with a great
reduction of Lines-of-Codes (LOC) in CHOPPER: averaged across all selected workloads, CHOP-
PER reduces LOCs by 4.3X for hands-tuning a single subarray, and >103X less for hands-tuning all
subarrays in a rank. Our results also suggest that: CHOPPER can preserve the acceleration benefits
of Bit-serial SIMD PUD architectures against the CPU and GPU, when the problem settings grow
more complex.

We further provide sensitivity studies by (1) breaking down individual optimizations and exam-
ining their impacts separately to better understand the benefits of optimizations in CHOPPER; (2)
reconfiguring the DRAM organization (i.e., the size of a subarray) to demonstrate the robustness;
and (3) exploiting Subarray-Level Parallelism [30] to examine how the benefits of CHOPPER can
be further amplified, with novel architectural features in DRAM chips. Our results suggest that our
optimizations in CHOPPER are synergistic, and the benefits of CHOPPER are robust with novel
architectural features (Section 7).
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We make the following major contributions in this paper:

• We outline three outstanding issues in existing Bit-serial SIMD PUD architectures, including (1)
assembly programming interfaces for restricted programmability; (2) extra intra-subarray data
movements for limited efficiency; and (3) (potential) data spilling for huge overheads.

• We propose CHOPPER design to improve the programmability of Bit-serial SIMD PUD ar-
chitectures. To the best of our knowledge, CHOPPER is the first compiler infrastructure to
automatically generate efficient codes for Bit-serial SIMD PUD architectures.

• We propose three synergistic optimizations in CHOPPER, to further improve the efficiency of
CHOPPER-generated codes. These optimizations address the issues on (1) extra intra-subarray
data movements; and (2) (potential) data spilling. These optimizations broaden the scope of code
optimizations for Bit-serial SIMD PUD architectures.

• Our quantitative evaluation results show that CHOPPER can (1) bring significant benefits over
the state-of-the-art hands-tuned implementations; (2) provide robust benefits across a variety
of architectural configurations; and (3) amplify the benefits with novel architectural features of
DRAM chips.
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2 Background

We first describe the background of DRAM organizations and operations; then we describe the
relevant details of Processing-Using-DRAM architectures (as well as Bit-serial SIMD Processing-
Using-DRAM architectures) to provide essential background.

2.1 DRAM Organization and Operations

A modern main memory subsystem consists of one or more memory channels, where each channel
contains a memory controller that manages a dedicated subset of DRAM modules. The modules
in a single channel share an off-chip bus that is used to issue commands and transfer data between
DRAM modules and memory controller, which typically resides in the processor. Each module is
made up of multiple DRAM chips, which are grouped into one or more ranks. A chip is divided into
multiple banks, which can serve memory requests (i.e.„ loads or stores) independently. Each bank
typically consists of 64–128 two-dimensional arrays of DRAM cells called subarrays [11, 30, 48, 49],
which can serve memory requests (i.e.„ loads or stores) in parallel and independently of each other.
For each subarray, there are 512–2048 rows in commodity DRAM design. The memory controller
issues four commands to access and update data within DRAM [28]. In a typical memory access
process, (1) The memory controller activates the DRAM row containing the data via the ACTIVATE
command, which latches the selected DRAM row into the Local Row Buffer (LRB) of the subarray
that contains the row; (2) once the activation finishes, the memory controller issues a READ or
WRITE command, which operates on a column of data, on a READ, one column of the LRB is
selected using the column decoder and is sent to the Global Row Buffer (GRB) via global bitlines;
(3) GRB then drives the data to the chip I/O logic, which sends the data out of the DRAM chip
to the memory controller. While a row is activated, the memory controller can issue subsequent
READ/WRITE commands to access other columns of data from the LRB if there are other memory
requests to the same row, which is called a row buffer hit ; (4) the controller precharges the LRB
and the subarray by issuing a PRECHARGE command to prepare all bitlines for a subsequent
ACTIVATE command to a different row.

2.2 Processing-Using-DRAM Architectures

A Processing-Using-DRAM (PUD) subarray is organized in a similar manner with Ambit [49]. PUD
DRAM engines uses Triple-Row Activation (TRA) to analogly perform bitwise AND/OR operations,
and leverage dual-contact cells to implement NOT operations. Hereby, we provide an architectural
overview of a PUD DRAM subarray. Figure 1 shows the organization of a PUD DRAM subarray.
Within such a subarray, there are three groups: the Data group (D-group), the Control group
(C-group) and the Bitwise group (B-group).

Ambit [49] implements bulk bitwise operations with Triple-Row activation, where three rows(i.e.„
row A, B, and C ) are activated simultaneously, resulting in a bitwise majority function across the
cells in these three rows (i.e.„ R = AB + BC + AC ). By setting the initial value of row C (i.e.„
control row), to all "0"s (or all "1"s), such majority function turns into a bitwise AND (or OR)
of the bits in row A and B (i.e.„ operand rows). Ambit [49] also implements a row of modified
dual-connected cells to support bitwise NOT of an entire DRAM row. The above design choice
makes a PUD subarray logically complete.

The D-group contains regular rows that store data. The C-group consists of two constant rows,
called C0 and C1, that contain all “0"s and all “1"s values, respectively. These rows are used to
control which operations (i.e., AND/OR) to perform via a TRA. The D-group and the C-group are
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Figure 1: A Processing-Using-DRAM Subarray.

connected to the regular row decoder, which selects a single row at a time. The B-group contains six
regular rows, called T0, T1, T2, and T3; and two rows of dual-contact cells, called (DCC0, DCC0),
and (DCC1, DCC1). The B-group rows, called compute rows, are designated to perform bitwise
operations. They are all connected to a special row decoder that can simultaneously activate three
rows using a single address (i.e.„ perform a TRA). For a typical subarray size of 1024 rows [2], this
design splits the rows into 1006 D-group rows, 2 C-group rows, and 16 B-group rows.

2.3 Bit-Serial SIMD Processing-Using-DRAM

Several works extend Ambit [49] for architectural improvements. ELP2IM modifies the precharge
units (in local row buffer) within bitlines to improve the energy efficiency of bulk bitwise opera-
tions [55]. ComputeDRAM [20] is a proof-of-concept of Ambit [49], which shows that, it is feasible
to implement bulk bitwise row copy, logical AND and OR in unmodified commercial DRAM chips,
by violating the nominal timing specification properly to activate multiple rows in rapid succes-
sion. Though the above bulk bitwise copy and logical operations show great potential, the inner
structure of DRAM prohibits propagating carry bits across different bitlines. So that traditional
bit-parallel computation patterns can not perform complex operations (e.g., addition), which re-
quire carry propagation across bitlines. This makes the bit-serial computation promising for PUD
computation, where the input operands of a computation operation are bitline-aligned and have
the same length and width, making each bitline becomes a computation unit, we denote such data
layout as bit-serial (vertical) layout. Figure 2 gives an example to compare horizontal data layout
and vertical data layout.

By employing the bit-serial (vertical) layout, PUD engines operate in a Single-Instruction-
Multiple-Data (SIMD) manner. This is because the bulk bitwise operations are applied to the
entire DRAM row, so all of the results from bitlines are generated in parallel. Such a method makes
PUD engines support more complex operations in a cost-effective manner. In modern DRAM chips,
enabling inter-bitline operations can destroy the storage capability. Following the pioneering efforts
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Figure 2: Data layout: Horizontal versus Vertical.

of ComputeDRAM on bit-serial addition, recent efforts show that the Majority functions can be
used for complex operations (e.g., SIMDRAM [22] and other works [6]), which can be more efficient
than simply using AND/OR/NOT logic. SIMDRAM [22] uses an identical subarray architecture as
Ambit [49], exposes multi-bit (i.e., multi-rows in vertical layout) operations to the host processor.
SIMDRAM [22] also presents the state-of-the-art hands-tuned methodology for a single subarray of
Bit-serial SIMD PUD architectures, by reusing the Linear Scan Register Allocation algorithm [44]
for the reduction of intra-subarray data movements (for multi-bit operations).
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3 Motivation

We outline three outstanding challenges on existing Bit-serial SIMD PUD architectures from the
perspectives of programmability and efficiency. These challenges include: (1) assembly programming
interfaces for the poor programmability (Section 3.1); (2) extra intra-subarray data movements for
the low efficiency, when data can fit within DRAM subarrays (Section 3.2); and (3) (potential) data
spilling for huge overheads (or even slowdowns) (Section 3.3).

3.1 Challenge 1: Assembly Programming Interfaces for Poor Programmability

Existing Bit-serial SIMD PUD architectures (e.g., [22,49,55]) directly expose their instructions to the
host processors, and provide assembly-like interfaces for programmers to use. Hence, existing Bit-
serial SIMD PUD architectures only deliver assembly programming interfaces, which are considered
as great obstacles for programmers.
The State-of-the-art. The programming interface (i.e., SIMDRAM [22]) is in assembly; Moreover,
SIMDRAM [22] synthesizes data preparation and computation on Bit-serial SIMD PUD architec-
tures in multi-bits.
Limitation. There are three major limitations, and we detail each of them below.
➊ The assembly programming interface requires programmers to handle memory allocation explic-
itly, which is a huge burden. The issue can become more serious when the size of the data within a
subarray increments.
➋ All Bit-serial SIMD PUD architectures require codes to be written in the “SIMD-Within-A-
Register" style, which is notoriously infamous for the programming ease [15–17]. Moreover, the
synthesis of multi-bit operations further increases the burdens of bit-sliced code transformation.
➌ All existing programming interfaces only target one subarray on Bit-serial SIMD PUD architec-
tures, and there are no considerations on how to exploit parallelism of different DRAM components
(e.g., Bank-Level or Subarray-Level Parallelism). Note that naively broadcasting the written pro-
grams to all subarrays in all banks can not effectively exploit the Bank/Subarray-Level Parallelism.

3.2 Challenge 2: Extra Intra-subarray Data Movements for Low Efficiency

Early efforts on Bit-serial SIMD PUD architectures overlook the potential to reduce intra-subarray
data movements [20, 49, 55], which uses a pre-assigned region (i.e., Bitwise group (B-group)) for
the computation only. This is because DRAM operations are destructive. Therefore, Bit-serial
SIMD PUD demands intra-subarray data movements, to move data between the storage region
(i.e., D-Group) and the computation region (B-Group).
The State-of-the-art. The programming abstractions in Bit-serial SIMD PUD architectures [22]
incur a granularity mismatch between full-size storing (e.g., word-size, or byte-size) and bitwise
(i.e.„ one-bit) processing on Bit-serial SIMD PUD architectures, which prevents the minimization
of intra-subarray data movements.
Limitation. The above granularity mismatch limits the optimization space for the reduction of intra-
subarray data movements: all input operands are (A) transposed and stored at full size, but (B)
compute bit-by-bit. This results in redundant buffering for (parts of) data operands.

3.3 Challenge 3: (Potential) Data Spilling for Huge Overheads

All prior work [20, 22, 49, 55] overlook the potential issues of spilling data outside DRAM (i.e., to
the secondary storage), which can incur significant performance overheads (or even slowdowns) of
these architectures.
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The State-of-the-art. Prior work (e.g., [22,49,55]) overlook such an issue, and assume all workloads
only require a constant amount of DRAM rows to buffer either input data or the intermediate data.
Prior work also assume all data can always fit within a DRAM subarray.
Limitation. In fact, the size of the intermediate data, can be substantially amplified by the vector-
ization for the ultra-wide SIMD width, which gradually consume more space in this manner due to
the forbidden communications between SIMD lanes. This can eventually hit the limits of DRAM
subarrays, which finally leads to data spilling to the secondary storage. The spilling can cause
significant overheads (or even slowdowns) of Bit-serial SIMD PUD architectures.
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4 CHOPPER Design for the Better Programmability

In this section, we give an overview of the CHOPPER programming interface and the CHOPPER
compiler. We follow the assumption of the platform model for using Bit-serial PUD architectures:
viewing all these architectures as the standalone accelerators (e.g., [22,49,55]), and offloading coarse-
grained functions/computation kernels on Bit-serial SIMD PUD architectures.2.

4.1 The CHOPPER Programming Interface & Compiler

➊ Programming Interface. The CHOPPER programming interface is based on a synchronous
dataflow programming language, the Usuba Programming Language [36]3. The extensions ensures
the delivery of all elementary basic types (boolean, integer and real) and basic operators (arith-
metic, boolean, relational and conditional). We choose to deliver a dataflow programming interface,
to enable the whole-program analysis for (1) automatic memory allocation; and (2) bit-slicing com-
pilation. Figure 3 delivers a comparative example of written codes in (3A) SIMDRAM Programming
Interface [22]; and (3B) CHOPPER Programming Interface, to perform packed addition and sub-
traction. The example accounts for a single subarray for the clarity, and CHOPPER delivers a much
more elegant implementation than the SIMDRAM programming interface. This is because there
are no needs to explicitly handle (1) memory allocation (especially incremental memory allocation);
and (2) data transposition and preparation for Bit-serial SIMD PUD architectures.

(A) SIMDRAM Programming Interface [22]. (B) CHOPPER Programming Interface.

Figure 3: A comparative example of written codes in (A) SIMDRAM Programming Interface [22];
and (B) CHOPPER Programming Interface to perform packed addition and subtraction in a sub-
array of Bit-serial SIMD PUD architectures.

➋ Compiler. The CHOPPER compiler consists of the front-end and the back-end (as shown in
Figure 4), and we elaborate each component in detail separately.
• Front-End. The front-end of the CHOPPER compiler distills the programs written in its pro-
gramming interface, and translates them into C/C++ codes for a single subarray of Bit-serial
SIMD PUD architectures. The front-end is based on the Usuba compiler [36, 37], which is the
state-of-the-art bit-slicing compiler. A bit-slicing compiler can (1) automate the transformation
from arithmetic operations to equivalent logic operations; and (2) enable the corresponding trans-
formation by combining data transposition and (logic-synthesized) arithmetic operations. The main
difference between Usuba [36, 37] and CHOPPER front-end is that: Usuba compiles transposition

2We do not consider dual-use of these architectures in this work, though intra-subarray data movements can be
feasible (e.g., [11, 48,53]).

3The Usuba Programming Language is a synchronous dataflow language, since it follows the usual compilation
pipeline of synchronous dataflow languages, namely normalization and scheduling, with transformations. We have
extensively engineered it for the applicability, to support our evaluation setups.
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Figure 4: The workflow of the CHOPPER compiler.

and computation codes for processors, but CHOPPER compiles transposition codes for processors
and computation codes for Bit-serial SIMD PUD architectures. Hence, we implement this separa-
tion at Step-➋ of Figure 4, which consists of two parts: (1) we separate the target of this step to
translate transposition codes for the processor; and computation codes for Bit-serial SIMD PUD
architectures; and (2) we add an instruction inserter for write operations (after transposition codes),
so the processor can write transposed data into Bit-serial SIMD PUD architectures.
• Back-End. The back-end of the CHOPPER compiler translates bit-sliced codes in C/C++ into
assembly instructions for Bit-serial SIMD PUD architectures. The back-end is based on the LLVM
compiler [32], a modular compiler to be portable to different hardware architectures. An iterative
use of the back-end broadcasts C/C++ codes, generated from the front-end, to different subarrays
one by one.

In summary, the current design choice in CHOPPER can address the first two challenges of the
programmability issue (described in Section 3.1-➊ and -➋). However, this design focuses on code
compilation for a single subarray, which fails to effectively exploit the parallelism of different DRAM
components (e.g., Bank-Level Parallelism).

4.2 The VIRtual COde Emitter: A New Compilation Abstraction for Bit-serial
SIMD PUD Compilers

As described in Section 4.1, the baseline CHOPPER design does not aware of the parallelism of
different DRAM components (e.g., Bank-Level Parallelism), and therefore the generated codes fail
to exploit them. This is because the baseline CHOPPER design naively broadcasts codes for one
subarray (in a bank) to multiple subarrays (in all banks). Therefore, the design space of managing
multiple subarrays on Bit-serial SIMD PUD architectures remains unexplored.
➊ Motivation. Figure 5A shows an example using two banks, where data preparation and com-
putation are executed serially. Therefore, the baseline design (i.e., in both the state-of-the-art
methodology and the baseline CHOPPER in Section 4.1) can not effectively exploit the Bank-Level
Parallelism in modern DRAM chips (and Bit-serial SIMD PUD architectures).
➋ The “Virtual Code Emitter". We introduce a new compilation abstraction called “VIRtual
COde Emitter", to improve the exploitation of Bank-Level Parallelism on Bit-serial SIMD PUD
architectures. The key idea of VIRCOE is to exploit the Bank-Level Parallelism by overlapping
data transfer (i.e., the activation before READ/WRITE) and computation (i.e., the Triple-Row
Activation) on Bit-serial SIMD PUD architectures, in a more effective manner. Figure 5B gives out
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(A) The example under the baseline CHOPPER design.

(B) The example under the CHOPPER design with VIRCOE.

Figure 5: A comparative example on emitting codes to two different banks on Bit-serial SIMD PUD,
under (A) the baseline CHOPPER design (described in Section 4.1); and (B) the CHOPPER with
“Virtual Code Emitter".

a pictorial example to showcase the benefits of VIRCOE.
• Design. The “Virtual Code Emitter" is architected as a middleware between the front-end and
the back-end of the CHOPPER compiler. The goal of such middleware is to exploit the Bank-Level
Parallelism by making code emission aware of the DRAM hierarchy (namely emitting the codes to
multiple subarrays (in all banks) rather than only a single subarray (in a bank)). The design of
VIRCOE initializes virtual program counters to direct the first code for every subarray individually:
all subarrays are flagged based on different banks, and a virtual program counter is maintained for
each subarray. The counter directs the next code, after emitting the current code.
• Workflow. VIRCOE performs the code emission subarray by subarray, and triggers BLP-aware
optimizations whenever a data transfer code is emitted in the current subarray. If a data transfer
code is emitted, VIRCOE checks all the subarrays in other banks, to examine whether there are
any computation code can be emitted (by evaluating the corresponding virtual program counter).
The check is terminated when one of the two conditions is satisfied: (1) the total timing of the
to-be-emitted computation codes equals/exceeds the data transfer; or (2) all subarrays are iterated
and no more codes can be emitted.
• Applicability. We implement this middleware as a separate stack, hence there is no need for
modifications in either the front-end or the back-end. Therefore, this design can also be used when
Subarray-Level Parallelism (SALP) is enabled [30], by expanding the search range for the conditional
emission within the triggered optimization: under SALP, the activation can be parallelized at
subarray level. Hence, the search range of VIRCOE can include all other subarrays within the same
bank as well. (i.e., evaluated in Section 7.4).

4.3 Opportunities for Optimizing CHOPPER
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Though the above CHOPPER design greatly improves the programmability and BLP exploitation
of Bit-serial SIMD PUD architectures. The overall efficiency still needs to be improved to substan-
tially reduce data movements and spilling. We outline three new opportunities of bit-sliced codes
for Bit-serial SIMD PUD architectures, generated by CHOPPER.

➊ Reducing Redundant Buffering. As covered in Section 3, buffering redundant bits on Bit-
serial SIMD PUD architectures may cause extra data movements (e.g., spilling). Therefore, it is
desired to store as less the intermediate bits as possible on these architectures. Credited to CHOP-
PER, it is feasible to perform the whole-program analysis, and automatically schedule dependent
operations together whenever possible. Therefore, every dependent operation on the same bitslice
can be grouped, and thus this bitslice does not need to be buffered (in D-group, as shown in Figure 1).

➋ Increasing Data Reuse. Similar with ➊, data operands, which are the same across all SIMD
lanes (i.e., DRAM bitlines), can be considered as redundant as well. In existing Bit-serial SIMD
PUD architectures [22, 49], there are constant bits within each DRAM subarray. However, they
are only used for controlling the Triple-Row Activation. In fact, these constant bits can be ex-
ploited to construct constant operands in a bitwise manner, which can greatly improve data reuse.
Prior work [22, 49] do not use them for data reuse because: the programming abstractions for
data operands are at full size, and it is challenging to exploit bit-level operand reuse. However,
CHOPPER generates bit-sliced codes, which paves the way for data reuse at bit level. Hence, it is
promising to exploit bit-level patterns (e.g., bit-level sparsity) opportunistically so as to make full
use of these constant values (namely C-group in Figure 1) for data reuse.

➌ Reducing "Store-Copy-Compute" Patterns. All existing Bit-serial SIMD PUD architec-
tures follow the “Store-Copy-Compute" pattern (i.e., store the operands, copy them into computa-
tion region, and then compute), since DRAM operations are destructive. CHOPPER reduces the
granularity of storing data operands to one bit by providing bit-sliced codes. Hence, if the bitslice
only require “one-shot" computation (i.e., no need to store in D-Group as shown in Figure 1), it
is feasible to opportunistically direct the bitslice on the computation region (namely B-group in
Figure 1), eliminating unnecessary "Copy" in the "Store-Copy-Compute" Pattern.
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5 Optimizing CHOPPER for Better Efficiency

We examine how to further reduce data movements on Bit-serial SIMD PUD architectures. Though
bit-slicing can partially resolve the granularity mismatch between storing (i.e., full-size) and pro-
cessing (i.e., one-bit) operands on Bit-serial SIMD PUD architectures, it is still demanded to exploit
the architectural features of Bit-serial SIMD PUD, to further address the granularity mismatch. To
this end, we propose new Optimizations for Bit-Sliced codes (OBS), and implement them in the
CHOPPER compiler to improve the efficiency, for less data movements within (or outside) Bit-serial
SIMD PUD architectures.

5.1 Optimization 1: Bit-sliced Code Scheduling to Aggregate Dependent Op-
erations

To exploit the opportunity outlined in Section 4.3-➊, CHOPPER needs to exclusively manipulates
distilled codes from its programming interface, to reduce redundant data buffering for dependent
operations. This is because bit-sliced codes still inherit the execution order as these codes on the
full-size granularity of data operands. Therefore, it is still demanded to minimize the number of
rows for buffering the intermediate data operands. To this end, we propose a new bit-sliced code
scheduling, to aggregate dependent operations.
➊ Design. This optimization reorders and aggregates bit-sliced operations based on the data
dependency, to minimize the number of rows for buffering the intermediate operands. This is
achieved by a newly-proposed scheduling of bit-sliced codes. The design consists of two parts. First,
the compiler demands the knowledge of the dependency of all bit-sliced operations. Second, the
compiler demands the statistics for the occurrences of the dependant operands in bit-sliced codes,
to maximize the benefits of this optimization.

Figure 6: A comparative example for 4-bit in-DRAM bit-serial summation between (A) existing
Bit-serial SIMD PUD architectures, which need to buffer the intermediate results (compiled by
CHOPPER without Code Scheduling); and (B) CHOPPER with Code Scheduling, which does not
need to buffer the intermediate results.
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➋ Implementation. This optimization is completely implemented in the front-end (within Step-➋
in Figure 4), which consists of two modifications. First, we add a program analysis component to
extract the dependency of all operations. This can be directly derived from the dataflow graph
when bit-slicing automation is carried out. Second, we add a bit-sliced code scheduling component
to aggregate dependent operations under a greedy manner. The algorithm first ranks all variables
based on their number of occurrences in different operations; and then performs the aggregation,
according to the ranking.
➌ Example. Figure 6 shows a comparative example about how scheduling of bit-sliced codes
improves the utilization of in-DRAM data streaming. We compare our scheduling proposal with
existing Bit-serial SIMD PUD architectures (even compiled by CHOPPER without Optimization
1), using two consecutive 4-bit summations as an example. As shown in Figure 6-(A), the first 4-bit
summation generates a 4-bit the intermediate result, and uses this result to perform the other 4-bit
summation for the final result. However, if the proposed scheduling is used to aggregate dependent
operations (as shown in Figure 6-(B)), every summation consumes all operands, without the need
to buffer the intermediate bits.

5.2 Optimization 2: Bit-sliced Instruction Selection to Maximize Data Reuses

As identified in Section 4.3-➋, CHOPPER can actively examine the opportunities to use constant
values for data reuses. Existing Bit-serial SIMD PUD architectures maintain two rows to store
constant values (i.e., all "0" or "1"), which are intially used to control bitwise AND/OR opera-
tions [22, 48, 49]. Credited to bit-slicing in CHOPPER, the opportunities for bit-level data reuses
are significantly amplified.
➊ Design. To maximize the extent of data reuse, we observe that we can aggressively perform
bit-level data reuse in Bit-serial SIMD PUD architectures. The conventional compilers only expose
constant values at the operand level, whereas bit-level reuse is feasible on Bit-serial SIMD PUD

Figure 7: A comparative example for in-DRAM bit-serial addition A+B+CONST (where CONST
refers to CONSTANT values), between (A) existing Bit-serial SIMD PUD architectures which need
to write constant values by the CPU; and (B) Data Reuse of our proposal by taking advantage of
reusing initialized data rows.
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architectures (e.g., bit-level sparsity). Also, since bit-level data reuse is non-trivial in conventional
compilers, it is also expected to allow programmers to transparently decide whether this optimization
shall be enforced based on their own specifications, if they deem necessary.
➋ Implementation. This bit-level reuse optimization is an addition to the operand-level data
reuse, which is built with two parts ranging from the front-end and back-end. First, we provide an
extra parser in front-end of CHOPPER (within Step-➋ from Figure 4), to extract bit-level value
broadcast statements within the source program. This is achieved by exposing an annotation for
programmers, so that they can trigger this optimization and provide the specifications (e.g., which
set of bits and the constant values). Second, we add an additional pass in back-end of CHOPPER
(within Step-➌ from Figure 4), to bridge the C/C++ intrinsic functions for constant values and
assembly codes, using LLVM Constant Classes. Note that our addition do not affect the operand-
level data reuse. We provide an example to pictorially showcase its benefits of below.
➌ Example. Figure 7 shows a comparative example about how this optimization improves both
the performance and space efficiency. We consider an addition A+ B + CONST , where CONST
refers to CONSTANT values (i.e., the same across all lanes of Bit-serial SIMD PUD architectures).
As shown in Figure 7-(A), the CONST needs to be written by the CPU and buffered within the
Bit-serial SIMD PUD architectures. This causes two inefficiencies: (1) data movements increase
since the CPU needs to write the CONST values; and (2) the written CONST values need to be
buffered within Bit-serial SIMD PUD architectures, and the space efficiency decreases. However, if
we can reuse the initialized data rows (as shown in Figure 7-(B), both the performance and space
efficiency can be improved significantly, because (1) data movements are reduced for performance;
and (2) CONST values would be generated only when it is needed, without storing them in the
D-Group of the subarray.

5.3 Optimization 3: Renaming Bit-Sliced Instructions to Eliminate Redundant
Data Buffering

As for the opportunity in 4.3-➌, CHOPPER can opportunistically shorten the instruction sequence
by directly storing the bitslice on the computation region, if the bitslice can be overwritten. A
typical operation in Bit-serial SIMD PUD architectures follows the “Store-Copy-Compute" pattern,
which refers to “store the data, copy them into B-group (i.e., Rows for Multi-row Activation) and
then compute" [22,49,55]. This is due to the fact that operands are destructed during the multi-row
activation procedure in DRAM, so operands have to be copied to a specific region (i.e.„ B-group) to
maintain their value. Obviously, such copy operations waste extra space for buffering data and also
incur extra intra-subarray data movements. Credited to CHOPPER, we observe that the existence
of “one-shot" bitslices, which is only computed once, and would never be used again. For these “one-
shot" bitslices, the typical “Store-Copy-Compute" pattern can be shortened as “Store-Compute".
➊ Design. The design builds upon the benefits from the first two optimizations: for any “one-
shot" bitslices following the “Store-Copy-Compute" pattern, the compiler first eliminates “copy"
instructions and then renames the addresses of “store" instructions to store directly in the B-group.
➋ Implementation. We implement a specialized pass on the back-end of CHOPPER (within
Step-➌ in Figure 4). This specialized pass is organized into the following three steps. ➊ iterating all
glued regions of codes after Instruction Selection phase, and identifying “one-shot" bitslices with the
patterns of “write-copy-compute"; ➋ within the glued regions of codes, deleting the copy operations
to move written data into B-group; and ➌ replacing the destination address of “write" operations",
with the destination address of the deleted “copy" operations.
➌ Example. Figure 8 shows a comparative example of how this optimization improves both the
performance and space efficiency. We consider an addition A + B. As shown in Figure 8-(A), the
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Figure 8: A comparative example for in-DRAM bit-serial addition A + B between (A) existing
Bit-serial SIMD PUD architectures without supports of Instruction Renaming; and (B) Instruction
Renaming of our proposal by redirecting written data directly on computation regions.

command sequence follows "Store-Copy-Compute" pattern, which causes extra overheads including:
(1) data movements increase since in-subarray data copy is needed, resulting in performance over-
heads; and (2) the written values need to be buffered within Bit-serial SIMD PUD architectures,
and the space efficiency decreases. However, if we can rename and eliminate copy operations to
redirect the data (as shown in Figure 8-(B)), both the performance and space efficiency can be
improved significantly, because (1) data movements are reduced for better performance; and (2)
to-be-compute values are directly used without buffering.

5.4 Putting Them Together

All optimizations in CHOPPER are synergistic (as evidenced by our breakdown analysis in Sec-
tion 7.2). Overall, CHOPPER broadens the scope of existing hands-tuned methodology for Bit-serial
SIMD PUD architectures, by optimizing intra-subarray data movements and mitigating (potential)
data spilling issues. Moreover, CHOPPER delivers a fully-functional compiler to automate these
optimizations, which greatly improves both the programmability and efficiency. Hereby, we compare
CHOPPER optimizations with the state-of-the-art hands-tuned methodology (i.e., [22]).
➊ Intra-subarray Data Movments: CHOPPER can further reduce the amount of intra-subarray
data movements, compared with SIMDRAM [22]. First, the programming interface of SIMDRAM [22]
prohibits efficient analysis of the whole program, to deliver similar variants of optimization 2 from
CHOPPER. Second, SIMDRAM [22] stores all data operands as full size, and therefore it is infeasible
to fully exploit optimization 1 and 3 from CHOPPER.
➋ (Potential) Data Spilling: CHOPPER first identify the the impacts of (potential) data spilling,
whereas SIMDRAM [22] does not address. First, SIMDRAM [22] does not resolve the granular-
ity mismatch between storing and processing operands, which causes redundant data buffering.
Second, the methodology, used in SIMDRAM [22], solely focuses on intra-subarray optimizations,
which overlooks the potential issues of data spilling.
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We also identify the virtues of the automation. Though all optimizations can be hands-tuned,
the costs can be considered highly significant due to two reasons. First, all codes on Bit-serial SIMD
PUD architectures require to be written in the “SIMD-Within-A-Register" style, which is notoriously
infamous for both the programming difficulty and the code size. Second, all optimizations, proposed
in CHOPPER, requires the whole-program analysis. Given the fact that the “SIMD-Within-A-
Register" codes are significantly larger than the original program (normally 100X more LOCs), the
automation of these newly-proposed optimizations are essential.

19



6 Experimental Methodology

We first describe the experimental methodology during our evaluations; then we describe the spec-
ifications of the selected workloads during our evaluations; and finally we describe the detailed
configurations for our experimental studies.

6.1 Experimental Infrastructure

We use gem5 simulator [10] to implement Bit-serial SIMD PUD architectures, where we integrated
Ramulator for DRAM [31]. We also model a SSD using MQSim [51], to account for potential data
spilling. For Bit-serial SIMD PUD architectures, we consider Ambit [49], ELP2IM [55] and SIM-
DRAM [22], by rigorously comparing our implementations against them to ensure the correctness.
All architectures exploit the Bank-Level Parallelism, unless specified otherwise. We compare them
real machines, including a Intel Skylake multi-core CPU [1] and an NVIDIA TITAN V GPU [3].
Detailed configurations are shown in Table 1.

Table 1: Evaluated system configurations.

x86 [1], 8-cores, out-of-order, 4GHz;
Intel L1 D+I. Private Cache: 32kB, 8-way, 64 B line;

Skylake CPU L2 Private Cache: 256kB, 4-way, 64 B line;
L3 Shared Cache: 8MB, 16-way, 64 B line;

Main Memory: 32GB DDR4-2400, 4 channels & ranks
NVIDIA 6 graphics processing clusters, 5120 CUDA Cores;
TITAN V 80 streaming multiprocessors, 1.2 GHz base clock;

GPU L2 Cache: 4.5MB; Main Memory: 12GB HBM
gem5 emulation; x86 [1], 1-core, OoO, 4 GHz;

L1 D+I. Cache: 32kB, 8-way, 64 B line;;
L2 Cache: 256kB, 4-way, 64 B line;

Ambit [49] Mem. Controller: 8kB row size,
ELP2IM [55] FR-FCFS [47,54] scheduling;

SIMDRAM [22] Main Memory: DDR4-2400, 1 channel,
1 rank, 16 banks;

Solid-State Drive: 60GB, 1 channel,
1 chip/channel, 1 die/chip;

6.2 Workload Specifications

We elaborate how the selected workloads can be mapped to Bit-serial SIMD PUD architectures,
and describe how we vary the detailed configurations (as shown in Table 2).
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➊ Deep Neural Networks. We select DenseNet [8, 27] as DNN networks. Different from other
DNN architectures, DenseNet leverages the concept of “feature reuse" to enhance performance.
DenseNet divides multiple layers into Dense Blocks. Within each Dense Block, each layer takes
all input feature maps from previous layers. Therefore, the design of overwriting the input results
layer by layer, as existing Bit-serial SIMD PUD architectures, can not be applied for DenseNet. We
apply 5 Dense Blocks for our experiments, and we vary the size of each Dense Block.
➋ Compressed Suffix Arrays. We select Wavelet Tree Construction [21], a fast query-able data
structure where no decompression is required. Wavelet Tree encodes the document based on the
partitions of the alphabet/subsets, and recursively repeat until the subset can be distinguished
using 0 and 1 (i.e., when the subset only contains one character). Existing designs perform bit-
serial subtraction between characters and medians of partitions/subsets, and use the sign bits as
the encoding. Therefore, the design requires to buffer all encoding from previous layers, so that Bit-
serial SIMD PUD architectures can reorganize such medians layer-by-layer, to ensure the correctness
when encoding. We use a fixed size for the input document as 2GB, apply the size of characters as
8-bit, and we vary the size of the alphabet.
➌ Differential Privacy. We select DiffGen algorithm [38], a pioneering algorithm on data release
through differential privacy. DiffGen partitions the taxonomy tree of attributes, to recursively
encode raw data based on different levels of partitions. We use a fixed 4GB size for the input
document, set each attribute as 16-bit, and vary the number of attributes.
➍ Significance Weighting. We select Significance Weighting for collaborative filtering [25, 26],
an industrial standard for normalizing user data in recommender systems. Significance Weighting
normalizes the user statistics based on an empirical information: if the user rates less then 50 items,
the statistics need to be normalized. We use addition for such a normalization. The input user-item
matrix is fixed as 4GB, and we vary the size of data elements within user-item matrix. Note that
each element has a 864-bit identifier.

Table 2: An overview of detailed configurations regarding derived real-world workloads, from four
application domains.

Types Workload Configurations
DenseNet layers within a Dense Block (DB) =

16 32 64 128
Wavelet Tree σ =
Construction 64 128 256 512

DiffGen the number of attributes (attr.) =
64 128 256 512

Significance element size within user-item matrix =
Weighting 64-bit 128-bit 256-bit 512-bit

6.3 Benchmark Configurations

We use representative frameworks to evaluate respective workloads on multi-core CPUs and GPU
separately. For DenseNet inference, we use PyTorch [42] to perform the inference; for Wavelet Tree
Construction, we use LevelWT [50] for CPUs and implement a variant for GPUs; for Differential
Privacy, we leverage LevelWT [50] to extend DiffGen for CPUs and GPUs; as for Significance
Weighting, we implement the algorithm [25, 26] for CPUs and GPUs. We rigorously tune these
implementations for multiple attempts, in order to obtain the best performance.
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7 Experimental Results

We first compare CHOPPER against the state-of-the-art hands-tuned implementations (i.e., the
SIMDRAM methodology [22]) in Section 7.1. Then we perform a breakdown analysis of CHOPPER
to understand the benefits of each optimization in Section 7.2. Next, we examine potential impacts
of different subarray sizes in DRAM in Section 7.3. Finally, we examine potential impacts when
enabling subarray-level parallelism in DRAM in Section 7.4.

7.1 CHOPPER versus Hands-Tuned Codes

Performance. Figure 9 shows the speedup of Titan V, three Bit-serial SIMD PUD architectures
(i.e., Ambit [49], ELP2IM [55] and SIMDRAM [22]) with hands-tuned methodology and CHOPPER
respectively, over the Intel Skylake multi-core CPU. Note that the first two configurations of each
workload do not require data spilling while the rest configurations do. We make two observations.

Figure 9: Speedup of all workloads over Intel multi-core for CHOPPER and the hands-tuned codes.

First, CHOPPER improves the performance of Bit-serial SIMD PUD architectures over the
state-of-the-art hands-tuned methodology, when data completely fit within DRAM subarrays (i.e.„
the first two configurations). Compared with hands-tuned codes on Ambit [49], ELP2IM [55] and
SIMDRAM, CHOPPER codes deliver an average speedup by 1.25X, 1.16X and 1.11X for DenseNet
inference; 1.16X, 1.08X and 1.03X for Wavelet Tree Construction; 1.23X, 1.59X, and 1.64X for
DiffGen; and 1.26X, 1.29X, and 1.27X for Significance Weighting. This is because (1) the current
hands-tuned methodology can not minimize intra-subarray data movements due to the data granu-
larity mismatch, and CHOPPER effectively overcomes this problem and thus minimizing redundant
intra-subarray data movements; and (2) the emitted codes from CHOPPER effectively exploit the
Bank-Level parallelism.

Second, CHOPPER significantly improves the performance of Bit-serial SIMD PUD architec-
tures over the state-of-the-art hands-tuned methodology, when data need to be spilled to the sec-
ondary storage. Compared with hands-tuned codes on Ambit [49], ELP2IM [55] and SIMDRAM,
CHOPPER codes deliver an average speedup by 7.96X, 7.71X, and 5.82X for DenseNet inference;
5.05X, 3.82X, and 6.89X for Wavelet Tree Construction; 32.29X, 15.99X, and 20.79X for DiffGen;
and 5.12X, 8.68X, and 5.73X for Significance Weighting. This is because current hands-tuned
methodology overlook the potential issues of data spilling, and CHOPPER can greatly mitigate the
overheads from data spilling on Bit-serial SIMD PUD architectures, by effectively exploiting the
limited space of DRAM subarrays. This enables these architectures to accelerate a broader range
of problem settings.
Programmability. We then compare Lines-Of-Codes (LOCs) of CHOPPER-generated codes with
LOCs of the hands-tuned codes for Bit-serial SIMD PUD architectures, following the methodology
in SIMDRAM [22]. We rigorously examine our implementations against SIMDRAM [22], to ensure
the correctness of our implementations.
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Table 3: A comparison of Lines-Of-Codes in the state-of-the-art hands-tuned methodology and
CHOPPER for selected workloads. “single" refers to hands-tuned codes for one subarray, and
“all" refers to hands-tuned codes for all subarrays. Note that WTC stands for “Wavelet Tree
Construction", and SW stands for Significance Weighting".

Methods Workloads
DenseNet WTC DiffGen SW

Hands-Tuned (single) ≈ 2.1K ≈ 1.5K ≈ 1.7K ≈ 0.9K
Hands-Tuned (all) ≈ 4.3K2 ≈ 3.1K2 ≈ 3.5K2 ≈ 1.8K2

CHOPPER ≈ 0.7K ≈ 0.3K ≈ 0.4K ≈ 0.2K

Table 3 reports the LOCs of hands-tuned codes and CHOPPER codes, for the selected workloads
in our experiments. We make the observation that, CHOPPER can significantly reduce the LOCs of
Bit-serial SIMD PUD workloads. Compared with hands-tuned codes for one subarray, CHOPPER
can reduce LOCs by 3.2X, 5.1X, 4.3X and 4.4X, for DenseNet, Wavelet Tree Construction, DiffGen
and Significance Weighting. This is because CHOPPER delivers a dataflow programming interface,
and eases the development costs by automating (1) memory allocation and managements of DRAM
subarrays; and (2) bit-sliced code generation. These automation allows CHOPPER programming in-
terface to solely focus on high-level implementation for these algorithms, which substaintially reduce
LOCs significantly. Compared with hands-tuned codes for all subarrays, the LOC of CHOPPER-
generated codes can be 103X less. This is because CHOPPER automates the code emission to
effectively manage all subarrays. On the contrary, SIMDRAM requires explicitly to implement the
algorithms subarray-by-subarray, which greatly increases the programming burdens.

7.2 Breakdown Analysis of CHOPPER

As suggested in Section 7.1, Ambit [49] can deliver better coverage in our evaluation workloads
than both SIMDRAM [22] and ELP2IM [55], where no slowdowns are incurred under CHOPPER
over the multi-core CPU. Hence, we perform a breakdown analysis based on Ambit [49]. We break
down CHOPPER to examine the performance gains of each optimization. Table 4 lists CHOPPER
variants with different optimizations. Figure 10 shows the performance gains of CHOPPER variants
over Intel multi-core CPU.

Figure 10: Speedup of all workloads over Intel Skylake multi-core for CHOPPER breakdown anal-
ysis.

We observe that, CHOPPER variants, with optimizations enabled, always improve performance
over CHOPPER-bitslice. CHOPPER variants provides an average speedup over CHOPPER-bitslice
by 2.54X (up to 5.31X) for DenseNet inference, 3.85X (up to 11.35X) for Wavelet Tree Construction,
6.69X (up to 22.63X) for DiffGen, and 1.68X (up to 3.19X) for Significance Weighting. Across
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all 16 real-world workloads, the average performance improvement of CHOPPER-full is 10.33X,
1.38X and 5.11X, compared with Intel Skylake multi-core CPU, TITAN V GPU and CHOPPER-
bitslice. We observe CHOPPER-bitslice incurs slowdowns (compread with TITAN V GPU), when
the problem settings become more complex. This is because CHOPPER-bitslice can not efficiently
take advantage of the DRAM capacity, leading to the problem of data spilling.

Table 4: Denotations for CHOPPER breakdown.

abbr. Optimizations
schedule reuse rename

bitslice
schedule "

reuse " "

rename " " "

7.3 Impacts of DRAM Subarray Size

DRAM subarray size directly influences the capacity of Bit-serial SIMD PUD architectures. A
subarray in a modern DRAM chip can be organized with different numbers of rows (i.e., usually
from 512-2048 rows). We vary the size of subarrays within each bank (i.e., with a fixed total
capacity), from 512 rows/subarray to 2048 rows/subarray. Figure 11 reports the results.

Figure 11: Speedup of Bit-serial SIMD PUD architectures with varied subarray sizes over Intel
multi-core.

We make two observations. First, the performance improvements of CHOPPER is robust with
the smaller size of subarrays within each bank. On average, CHOPPER-full outperforms TITAN
V by 1.35X, 1.61X, 1.13X and 1.03X for DenseNet, Wavelet Tree Construction, DiffGen and Sig-
nificance Weighting. However, when the subarray size is 512 rows, CHOPPER-bitslice exhibits
slowdowns in DenseNet and Significance Weighting. This is because the varied size of subarrays im-
pacts the available space for data streaming, and Bit-serial SIMD PUD architectures can suffer from
the performance overheads of exceeding the memory capacity earlier if the size of subarrays become
smaller. Second, the performance benefits of CHOPPER are larger than CHOPPER-bitslice with
the increasing size of subarrays. When changing the subarray size from 1024 rows into 2048 rows,
the speedup of CHOPPER-rename/bitslice increases by 12.81%/8.02%. This is because CHOPPER
can both exploit the memory capacity efficiently and accelerate the computation of Bit-serial SIMD
PUD architectures.
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7.4 Impacts of Subarray-Level Parallelism

We enable Subarray-Level Parallelism (SALP) [30] to understand how CHOPPER performs un-
der such a setting. To demystify the trade-offs of our newly-proposed VIRCOE code emitter, we
reconfigure VIRCOE to make it aware of Bank-Level Parallelism (BLP) and SALP respectively,
and examine the impacts with or without SALP enabled. Figure 12 reports the results of this
experiment.

Figure 12: Speedup of Bit-serial SIMD PUD architectures w/ or w/out Subarray-Level Parallelism
over Intel multi-core.

We make two observations. First, the performance improvements of CHOPPER (w/ Subarray-
aware VIRCOE) degrade when only BLP is enabled. When SALP is not enabled, compared with
CHOPPER-bitslice and CHOPPER-rename (w/ Bank-aware VIRCOE), CHOPPER-bitslice and
CHOPPER-rename (w/ Subarray-aware VIRCOE) degrades the performance benefits by 7.9% and
7.5% averaged across all workloads. This is because codes are emitted from the improper configu-
ration of VIRCOE, which exaggerates the bank conflicts. Second, the performance improvements
of CHOPPER (w/ Subarray-aware VIRCOE) amplify when SALP is enabled. When SALP is
enabled, compared with CHOPPER-bitslice and CHOPPER-rename (w/ Bank-aware VIRCOE),
CHOPPER-bitslice and CHOPPER-rename (w/ Subarray-aware VIRCOE) amplifies the perfor-
mance benefits by 11.1% and 24.5% averaged across all workloads. This is because the Subarray-
aware VIRCOE makes CHOPPER-generated codes effectively exploit SALP, whereas Bank-aware
VIRCOE can not.
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8 Related Works

We discuss related works of CHOPPER in a broad context of Processing-In-Memory (PIM) ar-
chitectures, including both Processing-Using-Memory and Processing-Near-Memory. To the best
of our knowledge, CHOPPER is the first work to (1) introduce dataflow programming interface
in PIM; (2) introduce bit-slicing and its automation into PIM; and (3) systematically address the
data movement overheads, caused by the granularity mismatch between storing and processing data
operands on PIM.

CHOPPER delivers the first proof-of-concept that dataflow programming can be used to program
computation kernels on PIM architectures. Early works (e.g., IRAM [43], FlexRAM [18], Active
Pages [40], DIVA [23] and etc.) and recent works (e.g., UPMEM DPU [12], SAMSUNG FIM-
DRAM [33], SK Hynix AiM [24] and etc.) only use programming interfaces in C/C++ or assembly.
The modular design of CHOPPER allows these architectures to benefit from dataflow programming.
If their C/C++ compilers are available, they can be integrated with CHOPPER as the back-end to
make these architectures benefit from dataflow programming (as we discussed in Section 9).

CHOPPER is the first work to introduce bit-slicing (and its automation) into PIM architectures.
Pioneered by Biham et al [9], bit-slicing is considered as hand-tuned optimizations to effectively max-
imize the parallelism, which is notoriously infamous in terms of the programmer burdens [15–17].
There are only a limited amount of efforts on bit-slicing automation [45, 46], and Usuba is the
most recent advance for the automation of bit-slicing [36, 37]. CHOPPER is fundamentally differ-
ent from Usuba regarding both design goals and implementation choices: (A) CHOPPER targets
Bit-serial SIMD PUD architectures, and proposes new optimizations on bit-sliced codes on these
architectures; (B) Usuba solely focuses on automating bit-slicing for modern SIMD architectures.
Moreover, CHOPPER can potentially allow other PIM to further improve the parallelism, via bit-
slicing tricks in an automated manner.

CHOPPER is the first work to systematically address the granularity mismatch between storing
and processing operands on PIM architectures. The closet work to the OBS in CHOPPER is the
reuse of “Linear Scan Register Allocation" [44] in SIMDRAM [22]. However, [22] overlooks the
granularity mismatch, which precludes minimizing the data movements on Bit-serial SIMD PUD
architectures. On the contrary, CHOPPER (1) utilizes bit-slicing to break the granularity restriction
in the state-of-the-art assumption; and (2) introduces OBS, which consists of three new optimiza-
tions, to minimize data movements on Bit-serial SIMD PUD architectures. Our methodology can
also be beneficial for other PIM, to reduce data movements for the better efficiency.
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9 Conclusions, Limitations and Implications

9.1 Conclusions from this work

We present CHOPPER, a new compiler infrastructure to improve both the programmability and
efficiency of Bit-serial SIMD PUD architectures. CHOPPER ➊ provides a synchronous dataflow
programming interface to improve the programmability; and ➋ incorporates new abstractions and
optimizations, to improve the overall efficiency of Bit-serial SIMD PUD architectures. We quantita-
tively evaluate the performance of CHOPPER, and the results suggest great potential of CHOPPER.
We also perform sensitivity studies to better examine the source benefits of CHOPPER.
We first discuss the limitations of CHOPPER, then we discuss the extendability of CHOPPER and
its potential to be combined with dataflow graph scheduling.

9.2 Limitations of CHOPPER

The current CHOPPER prototype follows the assumption of existing Bit-serial SIMD PUD archi-
tectures [22, 49, 55], which directly use physical addresses for memory allocation and computation.
This assumption is not practical, given the fact that (1) modern computer systems apply virtual-to-
physical address mapping; and (2) modern DRAM chips apply internal address remapping. Though
the above issues do not affect the proof-of-concept of our work, we envision that incorporating the
above features into CHOPPER and its follow-up works are essential, to enhance its practicality.

9.3 Implications: Extendability and Applicability

9.3.1 Extendability of CHOPPER to other PIM architectures

CHOPPER is expected to be generally extendable to other Processing-In-Memory architectures, in-
cluding both Processing-Using-Memory and Processing-Near-Memory architectures. By inheriting
Usuba [36, 37], CHOPPER front-end also yields a systematic generalization of bit-slicing compila-
tion, which supports (1) the horizontal (or bit-parallel) and vertical (or bit-serial) layout of data
operands; and (2) different sizes of data operands (e.g., bytes in Usuba [36,37], since modern SIMD
architectures use bytes as its elementary granularity for processing) for operand slicing. Therefore,
the extendability of CHOPPER is more promising than the current shape.
➊ For Processing-Using-Memory (PUM) architectures, CHOPPER can be extended to (1) facilitate
with different forms of data layouts (e.g., bit-parallel and bit-serial); and (2) support different
granularity of data operands (e.g., bytes and bits). Such an unique capability is credited to the
inheritance of the bit-slicing generalization in CHOPPER front-end, and we envision CHOPPER
is applicable to benefit different Processing-Using-DRAM architectures with marginal costs (e.g.,
pLUTo [14], Fulcrum [34] and etc.). Additionally, CHOPPER can also benefit other types of PUM
architectures (e.g., SRAM [13], PCM [35], ReRAM [52], RTM [39], NAND Flash [19,41] and etc.).
➋ For Processing-Near-Memory (PNM) architectures, CHOPPER can be applicable by combining
their C/C++ compilers as the back-end. This methodology can allow PNM architectures benefit
from bit-slicing for the better throughput, under different elementary sizes of data operands (e.g.,
IRAM [43], FlexRAM [18], Active Pages [40], DIVA [23], UPMEM DPU [12], SAMSUNG FIM-
DRAM [33], SK Hynix AiM [24] and etc.). Though no prior work examine the benefits of bit-
slicing on PNM architectures, we assume bit-slicing can play a significant role in PNM architectures
because the area constraints, when integrating processing logic near memory, demand software
tricks to improve the performance. Bit-slicing is particularly promising because the simplification of
operation complexity has already been evidenced by recent trends of PNM architectures (e.g., [5,7]).
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9.3.2 Potential Synergy between CHOPPER with Dataflow Graph Scheduling

CHOPPER proof-of-concepts that PIM computation kernels can be exposed as dataflow graphs, and
this can potentially allow more sophisticated strategies in dataflow scheduling for triggering PIM
acceleration. Recent advances demonstrate that dataflow graphs can be used to model large-scale
computations (e.g., TensorFlow [4]), and such systems can deliver optimizations at the level of the
dataflow graph (e.g., [29]). One can view the dataflow graph for PIM architectures (i.e., generated
by CHOPPER or its variants) as the sub-graph, and perform graph optimizations/substitutions in
such systems.

9.4 Implications on Future Research and Practice

Recent industrial practices already attempt PND for their products. However, the roadmap to
improve the programmability and the efficiency of these architectures (and PUD architectures) is
still unclear. They are mostly likely to remain as huge obstacles for the wide adoption of PIM.
By taking Bit-serial SIMD PUD architectures as a motivating example, our work introduces a new
compiler infrastructure for the better programmability and efficiency.

9.4.1 Major Implications on Research

Our work breeds three major implications on research, which will likely have long-term impact on
both industry and academia:

1. In-Memory Accelerators Can Be Programmable: our work introduces the first example
to support a (synchronous) dataflow programming interface on PIM architectures. Such an idea can
be exploited for other PIM architectures with small migration. Our work also clears the roadmap
on how to make PIM architectures benefit from high-level programming: by leveraging another level
of the indirection, it is expected to be feasible to incorporate PIM architectures in an accelerator
manner. This is because the switches between the processor and the PIM accelerator can be easily
achieved, and such a design philosophy can ignite more sophisticated designs, to provide portable
compilers for PIM-integrated systems.

2. A New Solution Direction to Improve the Efficiency of In-Memory Accelerators: our
work demonstrates the first software-level automation, to enhance the exploitation of memory-level
parallelism (MLP) on PIM architectures. Our work also reveals the importance of code permu-
tations for MLP exploitation, and experimentally demonstrates the potential benefits. Moreover,
our work demonstrates the applicability (and benefits) to adopt such an exploitation onto more ag-
gressive MLP. This can motivate future work on architectural (and compilation) designs for this goal.

3. Granularity Mismatch between In-Memory Accelerators and Memory Chips: our
work is the first to identify the issue of granularity mismatch between processing and storing operands
on PIM architectures. Our work clears the performance issues from the granularity mismatch, which
includes (A) data movements within PIM architectures; and (B) data spilling on PIM architectures.
With the emergence of PIM architectures in practice, these two issues can motivate ad-hoc solu-
tions (e.g., tight integration between PIM logic and memory chips) or unified solutions (e.g., new
hardware-software co-designs to address these issues) as future work.
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9.4.2 Long-Term Impacts on Industry

The importance of both the problem (programmabilty and efficiency) and the solutions presented
in this work will increase in future systems. The importance of “high-level programming on PIM
architectures" is likely to increase, as the emerging trends of PIM architectures in practice. The
importance of “exploitation of MLP on PIM" and “bit-slicing on PIM architectures" would also
increase, as the growing amount of industrial practices on improving the efficiency of In-Memory
Accelerators. Moreover, the importance of “resolving the granularity mismatch" will increase, as
the limited area budget for In-Memory Accelerators.

As a result, co-designs throughout architectural designs and software abstractions will likely be
considered as one of suitable alternatives, to some throughput-demanded techniques under area-
insufficient scenarios (e.g., DRAM chips) in future PIM-integrated systems: the need of bit-slicing
automation on Bit-serial SIMD PUD architectures architectures (and other PND architectures) is
such an example. To enhance the generality of PIM architectures in diverse set of workloads, the
desired techniques are expected to involve supports of high-level programming on PIM architectures.
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